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mild steel. A semi-infinite slab would attract M with the same force
(nearly) asthat due to an image magnet, identical to M, placed coaxial-
ly at a distance 2z, Eq. (4) is thus appropriate. (Make R>2z, to ap-
proximate infinite radius. Subtract the force due to a magnet located at
2z, to correct for finite thickness.)

“These materials also have a relatively limited region of linearity: For
similar samples placed in auniform B field, &, — 1 was found to fall by
an order of magnitude as the field increased from 2 to 100 mT (20 to
1000 G). | am indebted to Anthony Drake of the National Physical
Laboratory, Teddington, UK for these measurements.
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'*In practice, we need not concern ourselves with forces that remain con-
stant during weighing operations but only those that are synchronous
with the changing of masses on the balance pan. There are, of course,
other sources of magnetic interaction which have been ignored in this

paper, e.g., changes in ambient fields and their gradients.

“Reference 3, p. 343.

The dectronic andog of the bouncing bal is developed as a smple cassoom experiment
illustrating dl the important festures of this nonlinear chaotic sysem. In an operationd amplifier
circuit conventionaly used to dmulate the free fdl of a bdl in congant gravity, current feedback
through a precison diode rectifier is used to mode free fal when the rectifier is backward biased,
and the bounce when the rectifier is conducting. The esse with which parameters are controlled
and variables measured permits the investigation in grest detall of the specific dynamic behavior

of the bouncing ball.

. INTRODUCTION

Many dynamical problems cannot be analytically
slved. Smple Hamiltonian or disspative sysems gov-
erned by a few dynamica variables and characterized by a
few parameters may belong to this class. The main reason
for this difficulty lies in the fact that such systems, gov-
ened by regular differentid equetions, may behave erreti-
cdly in time During recent years this eratic or chaotic
behavior has been the focus of attention due to its inherent
beauty.!? One apparently simple dynamic system that ex-
hibits remarkably complex behavior is the bouncing bal.
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Firg introduced by Fermi,® and more recently studied ex-
perimentally and theoretically by many others*’ the
bouncing bdl is a onevariable, two-parameter system gov-
erned by Newton's eguation. A complete correlation be-
tween theory and experiment has been obtained for this
system. Experimentally, the system consists of a ball
bouncing verticaly, under gravity, on a harmonicdly vi-
brating surface. The two control parameters are the diss-
pation, which may be characterized by a coefficient of reti-
tuion K for the impacts, and the ratio a between the
accderation due to the vibrating surface and that due to
gravity. This dmple onedimensond mechanicd sysem
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has been used as an undergraduate experiment to illustrate
the evolution of a well-behaved dynamic sysem toward
chaos.® Although the bouncing bdl is unique in its Smpli-
city of conception and complexity of its behavior, the me-
chanica experiment has some magor drawbacks. Fird, the
period doubling routes, due to noise, are redricted to the
firg subharmonic  bifurcation.®’ Second, the experimenta
setup for the bouncing bal requires complex eectronic
equipment to explore the drange attractors that arise from
the cheotic motions?®

In this paper, we introduce an eectronic andog of the
mechanicd bouncing bal by use of an dementary drcuit
composed of three operationd amplifiers with feedback
current from a rectifier. Since dl signds are dectricd, data
collection and andyss become quite smple. Unlike pre-
vious mechanicd experiments in which the coeffident of
reditution was fixed, this dectricd andog dlows the su-
dent to explore experimentdly an ample region of the pa
rameter space of the sysem. Mogt of the features of a non-
linear systems, namely multiple period doubling
bifurcations, drange atractors, criss, fractd dimenson,
and intermittancy are accessble to undergraduate students
by use of an oscilloscope.

II. THE BOUNCING BALL

The bdl leaves the vibrating table, after the N th impact,
with vdacity v, when the table phase is ®,, and contacts
the table after atime ¢, governed by the equation

Xor SN @y + vty — Ot 3/2 = Xop sin(wty + Oy),

1
where g is the gravitationd congtant, x,, ahd o ae the
amplitude and angular frequency of the table, respectively.
For the next trgectory, immediady after the (N + 1) th
impact, the table phase ¢, , , and the new departure veloc-

ity are determined from the coupled parametric recursion
reaions

Gy, 1= Oy + wty, 2

vyt =K(gty —vy) + xo70(1 + K)(Py + wty).

(3)
Equation (3) defines the coefficient of ingtantaneous redti-
tution K.* After normdization® the s¢t of Egs (1) - (3)
reveds that the dynamics of this system is governed by only
two parameters, K and o =w’x,,/g; the normdized table
acceeration. For a given set of parameters (K and a), Egs.
(2 and (3) ae iteaed from sdected initid conditions
until a limit cyde is found or until a chaotic regime is char-
acterized by its dtrange attractor.

In 1975, Pippard” noticed thet, for a fixed K, there are
ranges of vaues for the parameter a that give stable orbits
with periodic impacts a n times the period of the table, 2n
times that period, and other subharmonics. He derived an
expression for these ranges of sability:

saddle/node saddle/node
n

n

X{1+[2(1+ K¥/nm(1 - K*)]3}'72,

a <a,< a

(4)
where

af]addle/node = n77‘( 1- K)/(l + K)
These rddions are displayed grgphicdly in Fig. 1 for the
firg five vaues of n, the number of tables cycles per impact.
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o« (acceleration ratio)

4
K (coeff. restitution)

Fig. 1. Two-dimensional parameter space for the bouncing ball showing
the range of stability of simple orbits according to Eq. (4).

In the above equdlities 0 « K < 1 is the coefficient of resti-
tution. The upper limits for each n vadue are criticd vaues
beyond which subharmonic orbits may be gable, the peri-
od doubling. After the discovery of the universd nature of
the period-doubling route to chaos in nonlinear systems in
genad, detals about the subharmonic limit cycles and
about the chaotic movements that exist beyond Pippard's
upper limit were published.®® Indeed, for the extremely
disspative case, the bifurcation diagram for the bouncing
bal for each n number resembles that for the logigtic equa
tion.! According to Eq. (4), the upper limit of dtability of
the firg orbit (» = 1) overlgps with the lower limit of &
bility for the next higher orbit (n = 2) for values of the
coefficient of reditution above K. = 0.6800. Then, for
K > K, vaious limit cyces and chaotic movements may be
reached at fixed vadues of K and a merdy by changing the
initil  conditions.

It is not necessary to discuss in this article more details
on the dynamics of the bouncing bdl. Thee deals have
been observed in the mechanicd experiment and from nu-
mericd simulation.® Suffice it to say that our dectronic
andog permits a student to display on an oscilloscope or a
drip-chart recorder dl the dynamics of the ided physicd
system, as wel as some important additiona abstract con-
cepts not easily observable in the mechanicd experiment.
In the following section the andogy between the mechani-
cd and the dectronic systems is established. Techniques
for obtaining the oscilloscope displays are described in de-
tail, and some of the results are presented.

[11. ESTABLISHING THE ANALOGY

The dectronic andog of the mechanica bouncing bal is
shown schematicdly in Fig. 2. The three operationd am-
plifiers ae JET linear differentid amplifiers with open
loop gain of about 25 000. The inset shows an optiona pre-
cison diode rectifier circuit tha may be used to idedize the
characterigtic of the feedback diode. This precision rectifier
(the “diode’) ensures that the feedback current to the
summing point S, is controlled by linear dements. No vol-
tage or current offset corrective circuits are necessary. The
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1.5V

Fig. 2. Circuit diagram. Inset-precision rectifier that may be substituted
for thediode.

components are mounted with no eectrodatic shielding on
a circuit board supplied with bipolar dc voltage from com-
mon sources. All C = 0.047 uF except for C;, and dl
R =10 k& except R, and R, =1 M. Voltages may be
selected for oscilloscope digplay of the postion of the bal
( ¥, ), postion of the table ( - V), or the velocity of the
bal (- V).

We show in this section that the eectronic andog Smu-
lates free fdl when the “diode’ is reverse biased, and im-
pact when it conducts During impact with the teble, the
bal experiences a force opposite to and much larger than
the gravitationd force acting on it during free fdl. The
circuit aso simulates a third regme  with
a =(01- K)/(1+ K), during which the bal must come
to maintan permanent contact with the table.

A. Free fall

When the “diode’ is reverse biased, the current i, leaving
the summing point S, (Fig. 2) of the first operationd am-
plifier, causes the charge Q and the voltage ¥, on the ca
pacitance C to change according to

= CdV“ (Amp). (5)

dt
To gmulate the negative gravitationd force the current is
directed as shown in Fig. 2. The second and third oper-
aiond amplifiers, an integraior and a gain-one inverter,
respectively, produce an output voltage ¥, given by

R,GV, (1) = f%(t')dt' (Vs). ©

When the “diode’ is reverse biased, and the current i is
much larger than the intrindc “diode’ reverse current,
Egs (5) and (6) can be written in the familiar second-
order differentid form

d. 7
R,C L o= 7
2%2 dr? C N
which is andogous to
d* _
dt2 g (8)

Thus for negative condtant current i, the parabolic solution
of Eg. (7) desribes the andogy to the time dependent
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1
position x of a fredy fdling mass in a congant gravitationa
field g. This circuit, without feedback, has been used long
ago for andog computation in bdlidics to determine the
time and postion of impact of a projectile on a target.

B. Impact

When the “diode’ is conducting, it limits the parabolic
excurson by providing a large current that exactly inverts
the voltage on the capacitance Cin a time too short to alter
the charge on C,. Thus V, inverts a a fixed ¥, whichis
andogous to the inverson of the veocity during a perfectly
elagtic impact of a rigid bal on a table a a fixed postion
Without dissipative dements in the feedback loop, impact
and parabolic free fdl repeat endlesdy, as though the coef-
ficient of redtitution were unity. A resstance R, in series
with the precison rectifier limits the feedback current and
represents an increese of the contact time between the bdl
and the table. The parabolas then become joined by one- -
haf cyce of a snelike function, exactly replicating a per-
fectly dadtic impact between the bdl and the table, where

one or both are deformable. The time intervel of contact |

7/ w, IS
T/wy = (RfCRZCZ) 1/2, (9)

where @, is the naurd frequency of the circuit considering
just the R, impedance in the feedback loop. For R, = 0O, the
duration of contact does not vanish. Ingtead, it is controlled
by the forward dynamic resstance of the rectifier. In
mechanical experiments, the position of the table is
varied harmonically in time to furnish energy to the
bouncing ball. Analogously, a varying voltage
V(1) = Vo cos(wt), added to the output V, a S, (Fg.
2), furnishes energy to the circuit and modifies Eq. (6).
Dissipation during contact is accomplished by a capaci-
tance C, in pardld with R, (in series with the feedback
rectifier). The excursons reman pefectly parabolic but
the hdf-sne cyce during contact shows a phase shift and
damping as though the coefficient of reditution were less
than unity. Thus the circuit has andogs to dl the aspects of
the bal bouncing on a vibraing table namdy, free fdl,
disspative or dadtic impacts, and energy exchange with
the moveble table During the contact time interval when
V, becomes postive, the precison rectifier conducts in a
direction opposte to the current i used to Smulate the
downward gravitational force. Equetions (6) and (7) then
become

a, K, av,
C C = % (2
dt R, ~ T " (10

RV, (1) = fVc(t')-dt' —R,CV (1), (11)

While ¥, is ill the andog of the ball velocity, ¥, (t) and

d ¥V, /dt are, respectively, the andogs of position and veloc-

ity of the bdl rddive to the table Subdituting Eqg. (11)
into (10), gives the equation of mation, valid during con-
tact, which is that of a damped linear oscillator:

v, V. Vr dv,
+ +w2fVc(t’)-dt’=___ C 4

dt 7 ° R, Yo% 7T
(12)
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Thefirst two terms ( Vr/R, and C, dV;-/dt) on the right of
Eq. (12) represent the contact forces and are, respectively,
analogous to eadtic and viscous coupling between the bal
and the table. When dissipation is present, the time interva
of contact 7/w’ becomes

T_x <1 - L )-”2, (13)
o o, (21w,)?

w here the rdaxation time r is given by
7= R,G,C/C,. (14)

After free fdl, the bdl maintans contact with the table
for hdf a period 7/w’ during which energy is disspated.
Thus the coefficient of reditution may be written from its
definition as *

K= - u,, /v, = exp( - 7/210"). (15)

With an appropriate choice of circuit components, and
driving frequency, contacts will occur in a short time inter-
va ( 7/’ <7/w) during which the rectifier conducts. The
complete range 0 <K < 1 is avalable by varying C,, which
changes nothing ese in the andog. The resstance R, must
remain smdl to Smulate indantaneocus impacts, a typicd
assumption necessry to redrict the system to only two
control  parameters.

After the coefficient of redtitution is edablished, the re-
maining control parameter a, the ratio of the acceleration
due to the vibrating surface and that due to gravity, is de-
rived from the previous eguations in a draghtforward
manner as

a = R,C,CV,,0*/i. (16)

IV. EXPERIMENTAL RESULTS

Many different periodic and chaotic orbits of the bdl, as
well as the table harmonic oscillation, can be observed on a
dud-channel oscilloscope using the dud-channe  vertica
axis The snusoidd traces in the photographs shown in
Fig. 3 display voltages corresponding to the table€'s position
in time for four different ¥,,. values. The other traces dis-
play voltages V', (t), corresponding to the parabolic excur-
sions of the bal for R, =2 k@ and C, = 0.047 uF. The
scope is triggered by the voltage V,.(t). The contacts of the
hall with the table correspond to the overlaps of the traces.
A smple periodic orbit (# = 1) is shown on the top left of
Fg. 3. Increasing the table's amplitude causes the bounc-
ing period to double (top right), and double again (bottom
left). Further incressing V. causes chaotic orbits to occur
(bottom right). The screen is brightened a a congtant ta
ble's phase ($ = 37/2), by connecting to the scope z-axis
voltage pulses triggered by V,. Using this procedure, the
student is able to observe the hifurcation diagrams and the
Poincare section of the attractors on screen, as explained
below. Bifurcation sequences can easily be observed on the
scope ether by changing the table amplitude or its frequen-
cy on the function generator. These changes correspond to
different vaues of the paamee a, with fixed K. The
traces in Fig. 3 were taken on the same frame for quick
comparison. By messuring the onst of hbifurcation vaues
for the drive voltage amplitude or frequency, the student
can esimate the Feigenbaum universd constant! Further-
more, the a vdues of the firs bifurcations for any smple
orbit are in close agreement with those predicted from Eg.
(4.
In order to determine experimentdly the parameter K,
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Fig. 3. Oscilloscope dua traces of the bouncing ball simulator showing
periodic and chaotic orbits.

one can drive the table with square waves from the function
generator. The impulses must have a period that is long
compared to the time required for the bal to come to rest
on the table. The plot of the impact time versus the impact
number follows a geometric progresson from which K can
be accurately determined.” Alternatively, K can be estimat-
ed directly either from the bal's velocity or postion versus
time curves. Figure 4 shows bhoth the podtion ¥, (t) (upper
trace) and the velocity—V, (1) of the bal during one hdf-
period of a square wave Vr( ¢t) for R, = 1 k@ and C,
= 0.047 yF. By messuing the velues of the veodity
changes during “impacts” which are quantified by the ver-
ticad wesk lines in the lower trace of Fig. 4, one obtains
K = 057 4+ 003 in agreement with the predicted vaue
(K = 0.6) derived from Eg. ( 18) usng nomind circuit
vadues. The smdl kinks observed on the veocity plot a the
“impacts’ are due to the phase shift caused by C,. From the
upper trace of Fig. 4, K = (x3*, /x4*)'? = 0.59 + 0.02,
where x™** ae the maximum height of the bal for eech
orbit.

Fig. 4. Oscilloscope traces that simulate the time position Vi(t) (upper
trace) and velocity — V. (#) (lower trace) of the ball bouncing on a fixed
table.
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Fig. 5. Oscilloscope traces of the bouncing ball simulator showing the
phase space ¥, versus—V¥, for the same orbits displayed on Fig. 3.

The phase space (bdl's velocity versus bdl’s postion) of
a large region of the a-K parameter space can be eadly
observed on the oscilloscope screen, by injecting V, and ¥,
as verticad and horizontal deflection voltages, respectively.
The phase space for a paticular a-K pair is sdected from
the circuit parameters, and from the driving sgnd. Figure
5 shows the limiting cycles for a sequence of period one,
two, and four followed by chaos for the same four values of
a used in Fig. 3, and the same fixed K vaue. The traces are
brightened when the table's phase is & = 3#/2. In this
way, the PoincarC section of each diagram is shown eesly,
and the strange ettractor is superposed on the diagram for
the chaotic movement (bottom right). The limiting cyde
for period eight, dthough aso observed, is not shown in
Fig. 5. Agan, dl traces are taken on the same frame for
quick comparison. Thee results are in close agreement
with those generated by numericd smulation from the pa
rametric recurson relations Egs. (2) and (3). The smal
overshoots to the left of each trace shown in Fig. 5 repre-
sent the velocity phase shifts during contacts caused by the
viscous coupling between the bdl and the table.

The Poincare cross sections in phase space can be ob-
served on the scope by connecting a pulse generator to the 2
axis. The pulses are triggered by a sdected phase @ of the
driving voltage V5 (¢). The bright spots on Fig. 5 represent
the Poincare section for $ = 37/2 for each of the periodic
orbits, and for a particular chaotic motion. Reducing the
trace brightness on the scope, the student is able to observe
only the PoincarC sections of each periodic or chactic orhit.
The PoincarC section of a chaotic orbit is cdled a strange
atractor, i.e, an atractor in the sense that for initid condi-
tions far from it, the representative point (bright spot) of
each of the resulting orbits converges to the attractor. Once
“in” the attractor, nearby points “srangely” tend to di-
verge & an exponentid rate.!® These attractors are sdf-
smilar over many length scdes, and so may be character-
ized by a noninteger fractd dimenson.”

Figure 6 shows a drange attractor for a = 4.5 and
K = 0.75 photographed directly from the oscilloscope us-
ing a exposure time of 45 s. The horizontd and vertica axes
represent the velocity and postion of the bal, respectively.
Voltage pulses taken a a sdected phase of the driving val-
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(c)

Fig. 6. PoincarC section (¥, versus — V¥,) of a strange attractor for
a =45, K = 0.75, and ¢ = 3#/2. The entire attractor is shown in (a).
Expanded views are shown in (b) and (c).

tage intengfy the screen once each table cycle. The com-
plexity of the attractor, crested by the overlap of the first
families of orbits is reveded by the five leaves that compose
the manifold. An expanded view of the far left leaf of the
atractor [Fig. 6(b)] illustrates the sdf-amilarity. Further
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Fig. 7. Bifurcation diagram of the bouncing ball simulator.

expandon of this Poincare section of phase space [Fig.
6(c)] up to the noise limit shows new layers gppearing in a
remarkable illustration of a Cantor dust. '® Again, dl these
results can be generated from the recurson relations pre-
vioudy derived, Egs (1) - (3).

Findly, the bifurcation diagrams for a given K vdue can
be photographed directly from the scope by dowly scan-
ning the amplitude of the driving voltage on the x axis. The
other two axes remain the same as before. An open camera
collects dl the spots during the scanning. The reult is
shown in Fig. 7 for K = 0.25 and ¢ = 3#/2. The horizon+
td axis (zero offset) is the normdized table accderation a
The verticd axis (zero offset) is proportiond to the bal's
height. The circuit parameters are R, = 10 kQ), C, = 0.1
uF, C=0.03 uF, R, =2 k), C,=0.1 uF, i= 147 pA,
and f = 100 Hz. The firgt bifurcation to the left occurs at
a = 24, reasonably close to the value 2.32 predicted by Eq.

(4).
V. CONCLUSIONS

An easily congructed eectricd andog of the bouncing
bal reveds dl the characteridtics of this well-studied non-
linear system. The table amplitude and frequency, the

gravitationa force and the podtion and velocity of the bdl
are accessble for oscilloscope display for quantitative com-
paison with numerica andyss based on Newton's equa
tions. Disspation during the tablebal contact may be
quantitatively controlled. In addition, the popular assump-
tion of ingdantaneous impact may be abandoned. By dlow-
ing the table or bdl to deform during impect, the student
may quantitatively examine collisions with durations
shorter or longer than the period of the table, an interesting
and easily concevable physcd system described by three
parameters. By using the z axis of the ostilloscope, impor-
tant abdract concepts, such as Poincare sections and
drange atractors, become eedly demongrable. Different
configurations of diode feedback in op amp circuits may be
used to dmulate other interesting nonlinear systems.
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TENNIS, ANYONE? THE UBIQUITOUS ROLE OF \/n

In dl activities, scientific or otherwise, [Fermi] had a mixture of semi-logicd whimsicd humor
about common-sense points of view. When he played tennis, for ingtance, if he lost four games to
Sx, he would say: “It does not count because the difference is less than the square root of the sum
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