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The electronic analog of the bouncing ball is developed as a simple classroom experiment
illustrating all the important features of this nonlinear chaotic system. In an operational amplifier
circuit conventionally used to simulate the free fall of a ball in constant gravity, current feedback
through a precision diode rectifier is used to model free fall when the rectifier is backward biased,
and the bounce when the rectifier is conducting. The ease with which parameters are controlled
and variables measured permits the investigation in great detail of the specific dynamic behavior
of the bouncing ball.

I. INTRODUCTION

Many dynamical problems cannot be analytically
solved. Simple Hamiltonian or dissipative systems gov-
erned by a few dynamical variables and characterized by a
few parameters may belong to this class. The main reason
for this difficulty lies in the fact that such systems, gov-
erned by regular differential equations, may behave errati-
cally in time. During recent years, this erratic or chaotic
behavior has been the focus of attention due to its inherent
beauty.1,2 One apparently simple  dynamic system that ex-
hibits remarkably complex behavior is the bouncing ball.
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First introduced by Fermi,3  and more recently studied ex-
perimentally and theoretically by many others,4-7 the
bouncing ball is a one-variable, two-parameter system gov-
erned by Newton’s equation. A complete correlation be-
tween theory and experiment has been obtained for this
system. Experimentally, the system consists of a ball
bouncing vertically, under gravity, on a harmonically vi-
brating surface. The two control parameters are the dissi-
pation, which may be characterized by a coefficient of resti-
tution K for the impacts, and the ratio a between the
acceleration due to the vibrating surface and that due to
gravity. This simple one-dimensional mechanical system
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has been used as an undergraduate experiment to illustrate
the evolution of a well-behaved dynamic system toward
chaos6  Although the bouncing ball is unique in its simpli-
city of conception and complexity of its behavior, the me-
chanical experiment has some major drawbacks. First, the
period doubling routes, due to noise, are restricted to the
first  subharmonic bifurcation6*’  Second, the experimental
setup  for the bouncing ball requires complex electronic
equipment to explore the strange attractors that arise from
the chaotic motions.8

In this paper, we introduce an electronic analog of the
mechanical bouncing ball by use of an elementary circuit
composed of three operational amplifiers with feedback
current from a rectifier. Since all signals are electrical, data
collection and analysis become quite simple. Unlike pre-
vious mechanical experiments in which the coefficient of
restitution was fixed, this electrical analog allows the stu-
dent to explore experimentally an ample region of the pa-
rameter space of the system. Most of the features of a non-
linear  systems, namely multiple period doubling
bifurcations, strange attractors, crisis, fractal dimension,
and  intermittancy are accessible to undergraduate students
by  use of an oscilloscope.

II. THE BOUNCING BALL

The ball leaves the vibrating table, after the N th impact,
with velocity uN  when the table phase is Q,,  and contacts
the table after a time tN, governed by the equation

xoT  sin Q,  + v,t, - gt k/2  = xoI.  sin(wt, + Q>,),
(1)

where g is the gravitational constant, x0,-  and o are the
amplitude and angular frequency of the table, respectively.
For the next trajectory, immediately after the (N  + 1)  th
impact, the table phase @,,,  + 1 and the new departure veloc-
ity are determined from the coupled parametric recursion
relations

@ iv+ 1 = Q,  + tit,, (2)

V ,,r+,  =K(gt,-vv,)+x,,w(l+K)(~,+wt,).

(3)
Equation (3) defines the coefficient of instantaneous resti-
tution K.4  After normalization,6 the set of Eqs. (1) - (3)
reveals that the dynamics of this system is governed by only
two parameters; K and α --‘x&g;  the normalized table
acceleration. For a given set of parameters (K and α), Eqs.
(2) and (3) are iterated from selected initial conditions
until a limit cycle is found or until a chaotic regime is char-
acterized by its strange attractor.

In 1975, Pippard4  noticed that, for a fixed K, there are
ranges of values for the parameter a that give stable orbits
with periodic impacts at n times the period of the table, 2n
times that period, and other subharmonics. He derived an
expression for these ranges of stability:
a;laddle/node < a,, < a;;ddlc,‘nodr

x(1  + [2(  1 + K2)/m-(  1 -  K2)12)“*,
(4)

where

a,,sadd’e’node  = nr( 1 -  K)/(  1 + K).

These relations are displayed graphically in Fig. 1 for the
first five values of n, the number of tables cycles per impact.
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Fig. 1. Two-dimensional parameter space for the bouncing ball showing
the range of stability of simple orbits according to Eq. (4).

In the above equalities, 0 <K  < 1 is the coefficient of resti-
tution. The upper limits for each n value are critical values
beyond which subharmonic orbits may be stable, the peri-
od doubling. After the discovery of the universal nature of
the period-doubling route to chaos in nonlinear systems in
general, details about the subharmonic limit cycles and
about the chaotic movements that exist beyond Pippard’s
upper limit were published.6-9  Indeed, for the extremely
dissipative case, the bifurcation diagram for the bouncing
ball for each n number resembles that for the logistic equa-
tion.1 According to Eq. (4),  the upper limit of stability of
the first orbit (n  = 1) overlaps with the lower limit of sta-
bility for the next higher orbit (n = 2) for values of the
coefficient of restitution above K, = 0.6800. Then, for
K > Kc  various limit cycles and chaotic movements may be
reached at fixed values of K and α merely by changing the
initial conditions.

It is not necessary to discuss in this article more details
on the dynamics of the bouncing ball. These details have
been observed in the mechanical experiment and from nu-
merical simulation.6  Suffice it to say that our electronic
analog permits a student to display on an oscilloscope or a
strip-chart recorder all the dynamics of the ideal physical
system, as well as some important additional abstract con-
cepts not easily observable in the mechanical experiment.
In the following section the analogy between the mechani-
cal and the electronic systems is established. Techniques
for obtaining the oscilloscope displays are described in de-
tail, and some of the results are presented.

III. ESTABLISHING THE ANALOGY
The electronic analog of the mechanical bouncing ball is

shown schematically in Fig. 2. The three operational am-
plifiers are JFET linear differential amplifiers with open
loop gain of about 25 000. The inset shows an optional pre-
cision diode rectifier circuit that may be used to idealize the
characteristic of the feedback diode. This precision rectifier
(the “diode”) ensures that the feedback current to the
summing point S, is controlled by linear elements. No vol-
tage or current offset corrective circuits are necessary. The
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position x of a freely falling mass in a constant gravitational
field g. This circuit, without feedback, has been used long
ago for analog computation in ballistics to determine the
time and position of impact of a projectile on a target.

I - -
F

Fig. 2. Circuit diagram. Inset-precision rectifier that may be substituted
for the diode.

components are mounted with no electrostatic shielding on
a circuit board supplied with bipolar dc voltage from com-
mon sources. All C = 0.047 PF except for Cf, and all
R = 10 kR  except RJ, and Ri  = 1 Ma. Voltages may be
selected for oscilloscope display of the position of the ball
( V,  ), position of the table ( -  V,), or the velocity of the
ball  (- Vc).

We show in this section that the electronic analog simu-
lates free fall when the “diode” is reverse biased, and im-
pact when it conducts. During impact with the table, the
ball experiences a force opposite to and much larger than
the gravitational force acting on it during free fall. The
circuit also simulates a third regime, with
α = (1 -  K ) / ( 1 + K), during which the ball must come
to maintain permanent contact with the table.

A. Free fall

When the “diode” is reverse biased, the current i, leaving
the summing point S, (Fig. 2) of the first operational am-
plifier, causes the charge Q and the voltage V, on the ca-
pacitance C to change according to

i= C$  (Amp).

To simulate the negative gravitational force, the current is
directed as shown in Fig. 2. The second and third oper-
ational amplifiers, an integrator and a gain-one inverter,
respectively, produce an output voltage V, given by

R2C2Vo(t)  =  V,(t’)dt’  ( V s ) .
I

(6)

When the “diode” is reverse biased, and the current i is
much larger than the intrinsic “diode” reverse current,
Eqs. (5) and (6) can be written in the familiar second-
order differential form

which is analogous to
d*x
-p =g. (8)

Thus for negative constant current i, the parabolic solution
of Eq. (7) describes the analogy to the time dependent
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B. Impact

When the “diode” is conducting, it limits the parabolic
excursion by providing a large current that exactly inverts
the voltage on the capacitance Cin a time too short to alter
the charge on C,.  Thus V,  inverts at a fixed V,  which  is 
analogous to the inversion of the velocity during a perfectly
elastic impact of a rigid ball on a table at a fixed position
Without dissipative elements in the feedback loop, impact
and parabolic free fall repeat endlessly, as though the coef-
ficient of restitution were unity. A resistance R/ in series
with the precision rectifier limits the feedback current and
represents an increase of the contact time between the ball
and the table. The parabolas then become joined by one-
half cycle of a sine-like function, exactly replicating a per-
fectly elastic impact between the ball and the table, where
one or both are deformable. The time interval of contact
r/w0 is

n-/w0  = (RJR&)  ‘I’, (9)
where w. is the natural frequency of the circuit considering
just the R,. impedance in the feedback loop. For R, = 0, the
duration of contact does not vanish. Instead, it is controlled
by the forward dynamic resistance of the rectifier. In
mechanical experiments, the position of the table is
varied harmonically in time to furnish energy to the
bouncing ball.  Analogously, a varying voltage
V,(t)  = V,,  cos ( ωt),  added to the output V, at S,  (Fig.
2),  furnishes energy to the circuit and modifies Eq. (6).
Dissipation during contact is accomplished by a capaci-
tance C’ in parallel with Rf  (in series with the feedback
rectifier). The excursions remain perfectly parabolic but
the half-sine cycle during contact shows a phase shift and
damping as though the coefficient of restitution were less
than unity. Thus the circuit has analogs to all the aspects of
the ball bouncing on a vibrating table; namely, free fall,
dissipative or elastic impacts, and energy exchange with
the movable table. During the contact time interval when
V, becomes positive, the precision rectifier conducts in a
direction opposite to the current i used to simulate the
downward gravitational force. Equations (6) and (7) then
become

C&L-,V
dt R.f

- Cf!.!L  -i,
dt

(10)

R&V,(t)  = V,(t’)*dt’-R&V,(t). (11)

While V,  is still the analog of the ball velocity, V, (t) and
d V, /dt  are, respectively, the analogs of position and veloc-
ity of the ball relative to the table. Substituting Eq. (11) 
into (10),  gives the equation of motion, valid during con-
tact, which is that of a damped linear oscillator:

dV,v,(t’).dt’=F  +C’-  -5.
r dt

(12)
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The first two terms ( VT/R,  and C, dV,/dt)  on the right of
Eq.   (12) represent the contact forces and are, respectively,
analogous to elastic and viscous coupling between the ball
and the table. When dissipation is present, the time interval
of contact  s-/w’  becomes

7T l/2

(II
* 1 - - L - ,-=-

00 ( m3”12 >
\\ here the relaxation time r is given by

(13)

r = R2C2C/Cf. (14)
After free fall, the ball maintains contact with the table

for half a period r/w’ during which energy is dissipated.
Thus  the coefficient of restitution may be written from its
definition  as 4

Kr  - v,,,/vin  = exp( -  a-/2rw’). (15)
With an appropriate choice of circuit components, and
driving  frequency, contacts will occur in a short time inter-
 val ( ~T/w’<~/w)  during which the rectifier conducts. The

 complete range 0 <K  < 1 is available by varying C,.,  which
changes  nothing else in the analog. The resistance Rf must
remain  small to simulate instantaneous impacts, a typical
assumption  necessary to restrict the system to only two
control parameters.

After the coefficient of restitution is established, the re-
maining  control parameter α, the ratio of the acceleration
due  to the vibrating surface and that due to gravity, is de-
rived from the previous equations in a straightforward
manner as

α = R,C,CV,,d/i. (16)

IV. EXPERIMENTAL RESULTS

Many different periodic and chaotic orbits of the ball, as
well as the table harmonic oscillation, can be observed on a
dual-channel oscilloscope using the dual-channel vertical
axis The sinusoidal traces in the photographs shown in
Fig. 3 display voltages corresponding to the table’s position
in time for four different VoT  values. The other traces dis-
play voltages V, (t), corresponding to the parabolic excur-
sions of the ball for R, = 2 klR  and C+  = 0.047 ,LLF. The
scope is triggered by the voltage V,.(t). The contacts of the
hall with the table correspond to the overlaps of the traces.
A simple periodic orbit (n = 1) is shown on the top left of
Fig. 3. Increasing the table’s amplitude causes the bounc-
ing period to double (top right), and double again (bottom
left). Further increasing V,,  causes chaotic orbits to occur
(bottom right). The screen is brightened at a constant ta-
ble’s phase (a = 3~/2),  by connecting to the scope z-axis
voltage pulses triggered by VT.  Using this procedure, the
student is able to observe the bifurcation diagrams and the
Poincare  section of the attractors on screen, as explained
below. Bifurcation sequences can easily be observed on the
scope either by changing the table amplitude or its frequen-
cy on the function generator. These changes correspond to
different values of the parameter α,  with fixed K. The
traces in Fig. 3 were taken on the same frame for quick
comparison. By measuring the onset of bifurcation values
for the drive voltage amplitude or frequency, the student
can estimate the Feigenbaum universal constant.1 Further-
more, the α  values of the first bifurcations for any simple
orbit are in close agreement with those predicted from Eq.
(4).

In order to determine experimentally the parameter K,
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Fig. 3. Oscilloscope dual traces of the bouncing ball simulator showing
periodic and chaotic orbits.

one can drive the table with square waves from the function
generator. The impulses must have a period that is long
compared to the time required for the ball to come to rest
on the table. The plot of the impact time versus the impact
number follows a geometric progression from which K can
be accurately determined.’ Alternatively, K can be estimat-
ed directly either from the ball’s velocity or position versus
time curves. Figure 4 shows both the position V, (t) (upper
trace) and the velocity-VV,.  (I) of the ball during one half-
period of a square wave Vr(  t) for R, = 1 kfl and C,
= 0.047 ,LLF. By measuring the values of the velocity
changes during “impacts,” which are quantified by the ver-
tical weak lines in the lower trace of Fig. 4, one obtains
K = 0.57 f 0.03 in agreement with the predicted value
(K = 0.6) derived from Eq. ( 18) using nominal circuit
values. The small kinks observed on the velocity plot at the
“impacts” are due to the phase shift caused by C,. From the
upper trace of Fig. 4, K = (xy’  , /xyx)“’  = 0.59 + 0.02,
where xmax are the maximum height of the ball for each
orbit.

Fig. 4. Oscilloscope traces that simulate the time position Vb(t) (upper
trace) and velocity - V,(t)  (lower trace) of the ball bouncing on a fixed
table.
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Fig. 5. Oscilloscope traces of the bouncing ball simulator showing the
phase space V,  versus-VV,  for the same orbits displayed on Fig. 3.

The phase space (ball’s velocity versus ball’s position) of
a large region of the α-K parameter space can be easily
observed on the oscilloscope screen, by injecting V,  and V,
as vertical and horizontal deflection voltages, respectively.
The phase space for a particular α-K pair is selected from
the circuit parameters, and from the driving signal. Figure
5 shows the limiting cycles for a sequence of period one,
two, and four followed by chaos for the same four values of
a used in Fig. 3, and the same fixed K  value. The traces are
brightened when the table’s phase is Q  = 31~/2.  In this
way, the PoincarC section of each diagram is shown easily,
and the strange attractor is superposed on the diagram for
the chaotic movement (bottom right). The limiting cycle
for period eight, although also observed, is not shown in
Fig. 5. Again, all traces are taken on the same frame for
quick comparison. These results are in close agreement
with those generated by numerical simulation from the pa-
rametric recursion relations Eqs. (2) and (3). The small
overshoots to the left of each trace shown in Fig. 5 repre-
sent the velocity phase shifts during contacts caused by the
viscous coupling between the ball and the table.

The Poincare cross sections in phase space can be ob-
served on the scope by connecting a pulse generator to the z
axis. The pulses are triggered by a selected phase Cp  of the
driving voltage V,(t).  The bright spots on Fig. 5 represent
the Poincare section for Q)  = 3?r/2 for each of the periodic
orbits, and for a particular chaotic motion. Reducing the
trace brightness on the scope, the student is able to observe
only the PoincarC sections of each periodic or chaotic orbit.
The PoincarC section of a chaotic orbit is called a strange
attractor, i.e., an attractor in the sense that for initial condi-
tions far from it, the representative point (bright spot) of
each of the resulting orbits converges to the attractor. Once
“in” the attractor, nearby points “strangely” tend to di-
verge at an exponential rate.”  These attractors are self-
similar over many length scales, and so may be character-
ized by a noninteger fractal dimension.”

Figure 6 shows a strange attractor for α = 4.5 and
K  = 0.75 photographed directly from the oscilloscope us-
ing a exposure time of 45 s. The horizontal and vertical axes
represent the velocity and position of the ball, respectively.
Voltage pulses taken at a selected phase of the driving vol-
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Fig. 6. PoincarC section (V, versus - V,)  of a strange attractor for
α  = 4.5, K = 0.75, and @  = 3?r/2. The entire attractor is shown in (a).
Expanded views are shown in (b) and (c).

tage intensify the screen once each table cycle. The com-
plexity of the attractor, created by the overlap of the first
families of orbits is revealed by the five leaves that compose
the manifold. An expanded view of the far left leaf of the
attractor [Fig. 6(b) ]  illustrates the self-similarity. Further
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Fig.  7. Bifurcation diagram of the bouncing ball simulator.

expansion of this Poincare section of phase space [Fig.
6(c) ]  up to the noise limit shows new layers appearing in a
remarkable illustration of a Cantor dust. I0 Again, all these
results can be generated from the recursion relations pre-
viously derived, Eqs. (1) - ( 3).

Finally, the bifurcation diagrams for a given K value can
be photographed directly from the scope by slowly scan-
ning the amplitude of the driving voltage on the x axis. The
other two axes remain the same as before. An open camera
collects all the spots during the scanning. The result is
shown in Fig. 7 for K = 0.25 and @  = 3~/2.  The horizon-
tal axis (zero offset) is the normalized table acceleration a.
The vertical axis (zero offset) is proportional to the ball’s
height. The circuit parameters are R2  = 10 kR,  C,  = 0.1
,LLF, C=O.O3pF,  R,=2  kS1,  C,.=O.l  ,LLF, i =  1.47pA,
and f = 100 Hz. The first bifurcation to the left occurs at
α = 2.4, reasonably close to the value 2.32 predicted by Eq.
(4).

V. CONCLUSIONS

An easily constructed electrical analog of the bouncing
ball reveals all the characteristics of this well-studied non-
linear system. The table amplitude and frequency, the

gravitational force and the position and velocity of the ball
are accessible for oscilloscope display for quantitative com-
parison with numerical analysis based on Newton’s equa-
tions. Dissipation during the table/ball contact may be
quantitatively controlled. In addition, the popular assump-
tion of instantaneous impact may be abandoned. By allow-
ing the table or ball to deform during impact, the student
may quantitatively examine collisions with durations
shorter or longer than the period of the table, an interesting
and easily conceivable physical system described by three
parameters. By using the z axis of the oscilloscope, impor-
tant abstract concepts, such as Poincare sections and
strange attractors, become easily demonstrable. Different
configurations of diode feedback in op amp circuits may be
used to simulate other interesting nonlinear systems.
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