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ihapter 14.  Modeling of Data

0 Introduction

- Given a set of observations, one often wants to condense and summarize
ata by fitting it to a “model” that depends on adjustable parameters.
times the model is simply a eonvenient class of functions, such as poly-
als or Gaussians, and the fit supplies the appropriate coefficients. Other
¢5, the model’s parameters come from some underlying theory that the
are supposed to satisfy; examples are coefficients of rate equations in a
mplex network of chemical reactions, or orbital elements of a binary star.
deling can also be used as a kind of constrained interpolation, where you
‘to extend a few data points into a continuous function, but with some
derlying idea of what that function should look like.

The basic approach in all cases is usually the same: You choose or de-
a figure-of-merit function (“merit function,” for short) that measures the
ment between the data and the model with a particular choice of pa-
ieters. The merit function is conventionally arranged so that small values
sent close agreement. The parameters of the model are then adjusted to
ve 8 minimum in the merit function, yielding best-fit parameters. The
tment process is thus a problem in minimization in ‘many dimensions.
is; optimization was the subject of Chapter 10; however, there exist spe-
more efficient, methods that are specific to modeling, and we will discuss
" in this chapter.

There are important issues that go beyond the mere finding of best-fit
meters. Data are generally not exact. They are subject to measurement
ors (called noise in the context of signal-processing). Thus, typical data
exactly fit the model that is being used, even when that model is correct.
eed the means to assess whether or not the model is appropriate, that
need to test the goodness-of-fit against some useful statistical standard.
We usually also need to know the accuracy with which parameters are
mined by the data set. In other words, we need to know the likely errors
he best-fit parameters.

Finally, it is not uncommon in fitting data to discover that the merit
ction is not unimodal, with a single minimum. In some cases, we may be
sted in global, rather than local questions. Not, “how good is this fit?”,
ather, “how sure am I that there is not a very much better fit in some
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| 518 | Chapter 14.  Modeling of Data

corner of parameter space?” As we have seen in Chapter 10, especially §10
this kind of problem is generally quite diflicult to solve.

The important message we want to deliver is that fitting of parameter
is not the end-all of parameter estimation. To be genuinely useful, a fitting
procedure should provide (i) parameters, (i) error estimates on the par
eters, and (i) a statistical measure of goodness-of-fit. When the third item
suggests that the model is an unlikely match to the data, then items (i)
(ii) are probably worthless. Unfortunately, many practitioners of paramet;
estimation never proceed beyond item (i)! They deem a fit acceptable
graph of data and model “looks good.” This approach is known as chi-by-
Luckily, its practitioners get what they deserve.

REFERENCES AND FURTHER READING:

Bevington, Philip R. 1969, Data Reduction and Error Analysis for
Physical Sciences (New York: McGraw-Hill).

Brownlee, K.A. 1965, Sratistical Theory and Methodology, 2nd ed. (Ne
York: Wiley).

Martin, B.R. 1971, Sratistics for Physicists (New York: Academic Pres!

von Mises, Richard. 1964, Mathematical Theory of Probabifity and
tics (New York: Academic Press), Chapter X.

Korn, G.A., and Korn, T.M. 1968, Mathematical Handbook for Scien
and Engineers, 2nd ed. (New York: McGraw-Hill), Chapters 18

14.1 Least Squares as a Maximum Likelihood
Estimator

Suppose that we are fitting N data points (z;, ) ¢ =1,..., N, toam
which has M adjustable parameters a;, § = 1,...,M. The model pr

variables,

y(z) = yl;e1 ... anr) (1

where the dependence on the parameters is indicated explicitly on the 1l

hand side.
What, exactly, do we want to minimize to get fitted values for the

The first thing that comes to mind is the familiar least-squares fit,

N
minimize overay...anr ! Z [vi — y(zs501 - .. a.M)]2 (1
i=1

But where does this come from? What general principles is it based on? T
answer to these questions takes us into the subject of mazimum likelt
estimators.
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Given a particular data set of z;’s and y;’s, we have the intuitive feeling
iat some parameter sets ay ...aps are very unlikely — those for which the
jodel function y(z) looks nothing like the data — while others may be very
kely — those which closely resemble the data. How can we quantify this
tuitive feeling? How can we select fitted parameters that are “most likely” to
¢ correct? It is not meaningful to ask the question, “What is the probability
iat a particular set of fitted parameters a ... e is correct?” The reason is
1at there is no statistical universe of models from which the parameters are
fa,wn. There is just one model, the correct one, and a statistical universe of
ata sets that are drawn [rom it!

That being the case, we can, however, turn the question around, and ask,
Given a particular set of parameters, what is the probability that this data set
juld have occurred?” If the y;’s take on continuous values, the probability
ill always be zero unless we add the phrase, “...plus or minus some fixed
y on each data point.” So let’s always take this phrase as understood. If
e probability of obtaining the data set is infinitesimally small, then we
n conclude that the parameters under cousideration are “unlikely” to be
ght. Conversely, our intuition tells us that the data set should not be too
nprobable for the correct choice of paramefers.

In other words, we identify the probability of the data given the parame-
rg (which is & mathematically computable number), as the likelthood of the
arameters given the data. This identification is entirely based on intuition.
has no formal mathematical basis in and of itself; as we already remarked,
atistics is not a branch of mathematics!

Once we make this intuitive identification, however, it is only a small
irther step to decide to fit for the parameters a, ...ans precisely by finding
ose values that mazimize the likelihood defined in the above way. This form
parameter estimation is mazimum likelihood estimation.

We are now ready to make the connection to (14.1.2). Suppose that each
ata point y; has a measurement error that is independently random and
stributed as a normal {Gaussian) distribution around the “true” model y{z).
nd suppose that the standard deviations o of these normal distributions are
e same for all points. Then the probability of the data set is the product
he probabilities of each point,

i)

ice that there iz a factor Ay in each term in the product. Maximizing
1.3) is equivalent to maximizing its logarithm, or minimizing the negative
ts logarithm, namely,

202

[E ly: — (o) J-Nlogay (14.1.4)
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Since N, o and Ay are all constants, minimizing this equation is eqmva.len
t0 minimizing (14 1.2). .

What we see is that least-squares fitting ¢s a maximum likelihood estima.
tion of the fitted parameters ¢f the measurement errors are independent and
normally distributed with constant standard deviation. Notice that we made
no assumption about the linearity or nonlinearity of the model y{(z;a;...} in
its parameters o, ... aps. Just below, we will relax our assumption of constang
standard deviations and obtain the very similar formulas for what is called
“chi-square fitting” or “weighted least-squares fitting.” First, however, let u
discuss further our very stringent assumption of a normal distribution.

For a hundred years or so, mathematical statisticians have been in love
with the fact that the probability distribution of the sum of a very large
number of very small random deviations always converges to a normal dis:
tribution. (For precise statements of this central limit theorem, consult von
Mises or other standard works on mathematical statistics.) This infatuation
tended to:focus interest away from the fact that, for real data, the normal
distribution is often rather poorly realized, if it is realized at all. We are often
taught, rather casually, that, on average, measurements will fall within
of the true value 68 percent of the time, within 20 95 percent of the tim
and within &30 99.7 percent of the time. Extending this, one would expect a
measurement to be off by +200 only one time out of 2 x 1038, We all know
that “glitches” are much more likely than thatl

In some instances, the deviations from a normal distribution are easy 10
understand and quantify. For example, in measurements obtained by counti
events, the measurement errors are usually distributed as a Poisson distribu-
tion, whose cumulative probability function was already discussed in §6
When the number of counts going into one data point is large, the Poisson
distribution converges toward a Gaussian. However, the convergence is n
uniform when measured in fractional accuracy. The more standard deviatio
out on the tail of the distribution, the larger the number of counts must be
before a value close to the Gaussian is realized. The sign of the effect is alwa]
the same: the Gaussian predicts that “tail” events are much less likely th
they actually (by Poisson) are. This causes such events, when they occur,:
skew a least-squares fit much more than they ought.

Other times, the deviations from a normal distribution are not so e
to understand in detail. Experimental points are occasionally just way o
Perhaps the power flickered during a point’s measurement, or someone kick
the apparatus, or someone wrote down a wrong number. Points like th
are called outliers. They can easily turn a least-squares fit on otherwi
adequate data into nonsense. Their probability of occurrence in the 2
sumed Gaussian model is so small that the maximum likelihood estim:
tor is willing to distort the whole curve to try to bring them, mistaken
into line.

The subject of robust statistics deals with cases where the normal
Gaussian model is a bad approximation, or cases where outliers are importan
We will discuss robust methods briefly in §14.6. All the sections between &
one and that one assume, one way or the other, a Gaussian model for tb
measurement errors in the data. It it quite important that you keep
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imitations of that model in mind, even as you use the very useful methods
which follow from assuming it.

Finally, note that our discussion of measurement, errors has been limited
tatistical errors, the kind that will average away if we only take enough
ta. Measurements are also susceptible to systematic errors that will not go
ay with any amount of averaging. For example, the calibration of a metal
meter stick might depend on its temperature. If we take all our measurements
he same wrong temperature, then no amount of averaging or numerical
egsing will correct for this unrecognized systematic error.

Chi-Square Fitting

We considered the chi-square statistic once before, in §13.5. Here it
s in a slightly different context.

If each data point {z;, ;) has its own standard deviation oy, then equa-
(14.1.3) is modified only by putting a subscript ¢ on the symbol 6. That
Bseript also propagates docilely into (14.1.4), so that the maximum likeli-
od estimate of the model parameters is obtained by minimizing the quantity

XQEi(yé—y(mé;al...aM))2 , (14.1.5)

0
i=1 ®

lfed the “chi-square.”

To whatever extent the measurement errors actually are normally dis-
buted, the quantity x? is correspondingly a sum of N squares of normally
istributed quantities, each normalized to unit variance. Once we have ad-
d the a; ...apr to minimize the value of x?, the terms in the sum are
t-all statistically independent. However it turns out that the probability
tribution for different values of x? at its minimum can nevertheless be de-
analytically, and is the chi-square distribution for N — M degrees of
edom. We learned how to compute this probability function using the in-
mplete gamma function gammg in §6.2. In particular, equation (6.2.18) gives
probability @ that the chi-square should exceed a particular value x? by
ance, where v = N — M is the number of degrees of freedom. The quantity
‘or its complement P = 1 — @ is frequently tabulated in appendices to
tistics books, but we generally find it easier fo use gammq and compute our
n values: g=gammq{(0.5%1,0.5%y2).

. This computed probability gives a quantitative measure for the goodness-
fit of the model. If } is a very smal} probability for some particular data
. then the apparent discrepancies are unlikely to be chance fluctuations.
ich more probably either (1) the model is wrong — can be statistically
ected, or {il) someone has lied to you about the size of the measurement
ors o; — they are really larger than stated.

It is an important point that the chi-square probability (@ does not di-
tly measure the credibility of the assumption that the measurement errors
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are normally distributed. It assumes they are. In most, but not all, cas
however, the effect of nonnormal errors is to create an abundance of outhi
points. These decrease the probability (2, so that we can add another pos
ble, though less definitive, conclusion to the above list: (iii} the measureme;
errors may hot be normally distributed.

Possibility (iii} is fairly common, and also fairly benign. It is for th
reason that reasonable experimenters are often rather tolerant of low prob
bilities €. It is not uncommon to deem acceptable on equal terms any mode
with, say, ¢ > 0.001. This is not as sloppy as it sounds: truly wrong mod
will often be rejected with vastly smaller values of @, 10718, say. Howeve
if day-in and day-out you find yourself accepting models with @ ~ 1073, yc
really should track down the cause, :

If you happen to know the actual distribution law of your measureme
errors, then you might wish to Monte Corlo stmulate some data sets dr
from a particular model, ef. §7.2-§7.3. You can then subject these synthet
data sets to your actual fitting procedure, so as to determine both the pr
bility distribution of the ¥? statistic, and also the accuracy with which yo
mode] parameters are reproduced by the fit. We discuss this further in §1
The technique is very general, but it can also be very expensive. _

At the opposite extreme, it sometimes happens that the probability @)
too large, too near to 1, literally too good to be true! Nonnormal measureme
errors cannot in general produce this disease, since the normal distributi
is about as “compact” as a distribution can be. Almost always, the ¢
of too good a chi-square fit is that the experimenter, in a “fit” of conse
vativism, has overestimated his or her measurement errors. Very rarely, -
good a chi-square signals actual fraud, data that has been “fudged” to |
the model.

A rule of thumb is that a “typical” value of x? for a “moderately” goo
fit is x¥? m v. More precise is the statement that, asymptotically for large:
the statistic x? becomes normally distributed with a mean v and a standa:
deviation v2v.

In some cases the uncertainties associated with a set of measuremen
are not known in advance, and considerations related to x2 fitting are us
to derive a value for 0. If we assume that all measurements have the s
standard deviation, o; = o, and that the model does it well, then we
proceed by first assigning an arbitrary constant ¢ to all points, next fit
for the model parameters by minimizing x?, and finally recomputing

N
= Z[?ﬁ — y(zi)]*/N (1

Obviously, this approach prohibits an independent assessment of goodnes
of-1it, a fact occasionally missed by its adherents, When, however, the m
surement error is not known, this approach at least allows some kind of €
bar to be assigned to the points. :
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. If we take the derivative of equation (14.1.5) with respect to the param-
eters ok, we obtain equations which must hold at the chi-square minimum,

0=3 (y,-—y(m)) (ay(x,-;...ak...)) b=l M (1417)
i=1

2
o; (9G.k

Equation (14.1.7) is, in general, a set of M nonlinear equations for the M
unknown ay. Various of the procedures described subsequently in this chapter
derive from (14.1.7) and its specializations.

REFERENCES AND FURTHER READING:

Bevington, Philip R. 1969, 2ata Reduction and Error Analysis for the
Physical Sciences (New York: McGraw-Hill), Chapters 1-4.

von Mises, Richard. 1964, Mathematical Theory of Probability and Statis-
tics (New York: Academic Press), §vI.C.

14.2 Fitting Data to a Straight Line

A concrete example will make the considerations of the previous section
ore meaningful. We consider the problem of fitting a set of N data points
iy ¥i) t0 a straight-line model

y(z) = y(z;a,b) = a+ bz (14.2.1)

This problem is often called linear regression, a terminology that originated,
ng ago, in the social sciences. We assume that the uncertainty o; associated
th each measurement ¥; is known, and that the z;’s (values of the dependent
riable) are known exactly.

To measure how well the model agrees with the data, we use the chi-
uare merit function {14.1.5), which in this case is

X*a,b) = i (uﬂi”:)Q (14.2.2)

i=1 Ti

he measurement errors are normally distributed, then this merit function

ill give maximum likelihood parameter estimations of a and ¥; if the errors

are not normally distributed, then the estimations are not maximum likeli-

od, but may still be useful in a practical sense. In §14.6, we will treat the

s¢ where outlier points are so nmumerous as to render the x? merit func-
useless.
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Equation (14.2.2) is minimized to determine e and b. At its minimum
derivatives of x2(a,b) with respect to a,b vanish.

8)(2 Nyg-—a—bm,;
L TR Dl B

o % (vi a—bsc%)
0= = 22

(14.2.3)

These conditions can be rewritten in a convenient form if we define the fo
lowing sums,

N o N N

— — T —_ T

S=ZF szzgg Syzzd—z

i=1 * =1 =1 % (1424
N .2 N y ’

=N s, =y
i=1 ¢ =1 't

With these definitions (14.2.3) becomes
a8+ 08, = 5y

14.2.5
ﬂSg: + ng;g: = Ty ( :

The solution of these two equations in two unknowns is calculated as

A = 884 ~ (Sg)?

. Sxa;sy — Sa:Smy
A

885y — 8.5y

= —Aﬁﬁ_

Equation (14.2.6) gives the solution for the best-fit model parameters o an

We are not done, however. We must estimate the probable uncertainti
in the estimates of a and b, since obviously the measurement errors in the dat
must introduce some uncertainty in the determination of those parameter
If the data are independent, then each contributes its own bit of uncertain
to the pa.rameters Consideration of propagation of errors shows that t
variance af in the value of any function will be

N 2
7-3 ()
i=1 *
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da  Spp — Spa;

dy; oA

o Sz;— S, (14.2.8)
3y, oA

(14.2.9)

hich are the variances in the estimates of & and b, respectively. We will see
" §14.5 that an additional nmumber is also needed to characterize properly
e probable uncertainty of the parameter estimation. That number is the
wariance of a and b, and (as we will see below) is given by

Covia,b) = =5, /A (14.2.10)

The coefficient of correlation between the uncertainty in a and the un-
rtainty in b, which is a number between —1 and 1, follows from (14.2.10)
ompare equation 13.7.1),

= — 14.2.11
Tab 5. ( )

‘positive value of ry, indicates that the errors in a and b are likely to have
e same sign, while a negative value indicates the errors are anticorrelated,
ely to have opposite signs.

: We are stifl not done. We must estimate the goodness-of-fit of the data to
e model. Absent this estimate, we have not the slightest indication that the
rameters ¢ and b in the model have any meaning at all! The probability
) that a value of chi-square as poor as the value (14.2.2) should oceur by
ance is

(14.2.12)

ere gammq is our routine for the incomplete gamma, function Q(e, ), §6.2. If
‘is larger than, say, 0.1, then the goodness-of-fit is believable. If it is larger
an, say, 0.001, then the fit may be acceptable if the errors are nonnormal or
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have been moderately underestimated. If ) is less than 0.001 then the mode]
and/or estimation procedure can rightly be called into question. In this latter .
case, turn to §14.6 to proceed further, :

If you do not know the individual measurement errors of the points oy, -
and are proceeding {dangerously) to use equation (14.1.6) for estimating these :
errors, then here is the procedure for estimating the probable uncertainties of -
the parameters @ and & Set o; = 1 in all equations through (14.2.6), and mul-
tiply o, and oy, as obtained from equation {14.2.9), by the additional factor .
v/ Xx2/(N — 2), where x? is computed by (14.2.2) using the fitted parameters
a and b, As discussed above, this procedure is equivalent to assuming a good
fit, so vou get no independent goodness-of-fit probability .

In §13.7 we promised a relation between the linear correlation coefficient
r (equation 13.7.1} and a goodness-of-fit measure, x? (equation 14.2.2). Fo
unweighted data (all o; = 1), that relation is

x% = {1~ r*)NVar(y; ...yn) (14.2.13
where

N
NVar (y1...yn) = Y {4 —9)* (14.2.14
t=1

For data with varying weights o;, the above equations remain valid if the sum
in equation (13.7.1) are weighted by 1/02.

The following function, fit, carries out exactly the operations that w
have discussed. When the weights ¢ are known in advance, the calculation
exactly correspond to the formulas above. However, when weights o are un
available, the routine assumes equal values of o for each point and assume
a good fit, as discussed in §14.1.

The formulas (14.2.6) are susceptible to roundoff error. Accordingly, w
rewrite them as follows: Define :

and

Then, as you can verify by direct substitution,

N )

1 tils

b= — —_—
S“q;; T4
8, —8;b
¢TmTs T
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2 _ T
ot =3 (1 + _"Ssu) (14.2.19)
, 1
O} = = 14.2.20
b é%t { )
Cov(a,b) = ——= (14.2.21)
H - SStt -
rop = S0V(0:0) (14.2.22)
TalOp

#inclade <math.h>

tatic float aqrarg;
define SQR(a) (sqrarg=(a),eqrarg*sqrarg)

oid fit(x.y.ndata.sig.mwt.a.b,siga,sigb,chiz.q)

loat x[1,y{},eig{l,*a,+b,*siga,*sigh, *chi2, *q;

nt ndata,mwt;

Glven a set of points x{1..ndatal, yI1..ndata] with standard deviations sigl1..ndata],

it them to a straight Jine y=a+bx by minimizing xz. Returned are a,b and their respective
robatrle uncertainties siga and sigb, the chi-square chi2, and the goodness-of-fit probability
(that the fit would have x? this large or larger). If mwt=0 on inpui, then the standard

eviations are assumed o be unavailable: q is returned as 1.0 and the normalization of chi2

s to unit standard deviation on all points.

int i;
float wt,t,Exoss,sx=0.0,sy=0.0,st2=0.0,ss.sigdat;
float gammg();

*b=0.0;
if (mwt) o Accimulate sums ...
88=0,0;
for (i=1;i<=ndata;i++) { ...with welghts
wt=1.0/8QR(sig[i]);
88 += wt;

x += x[i)*wt;
By += y[i]*wt;

}

} else {

for (i=1;i<=ndata;i++)} { ...0F without weights.
ax += x[i];
sy += y[i];

}

Ba=ndata;

BX088=g8X/88;
if (mwt) {
for (i=1;i<=ndata;i++) {
t=(x[i]-exosa) /eiglil;
8t2 += g
¥ += tay[i]/eiglil; -
}
} else {
for (i=1;i<=ndata;i++) {
t=x[i] -sxo0ss;
8t2 += t¥g;
*b += txy[i];
}
}

¥b /= gt2; Solve for A, B, o5 and op.

T
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*a={gy-8x+(*b)) /ag;
*giga=sqrt ((1.0+sx+ax/(as*st2))/ea);
*8lgb=aqrt (1.0/8t2);
*chi2=0.0;
if (mwt == 0) {
for (i=l;i<=ndata;i++)
*chi2 += SQR(y[i]~(*a)-(*b)*x[i]);
*g=1.0;
eigdat=sqrt ((*chi2}/(ndata-2));
*¥siga ®= aigdat;
*sigh #= gigdat;
} else {
for (i=1;i<=ndata;i++)
*chi2 += SQR((y[11-(*a) - (xb)*x[1]) /eigli]);
*q=gammq (0.6 (ndata-2) 0.6+ (*chi2)}; §6.2

Calculate x?2.

For unwelighted data evaluate typical 8ig us-
ing ¢hi2, and adjust the standard deviz-
tlons.

REFERENCES AND FURTHER READING:

Bevington, Philip R. 1969, Data Reduction and Error Analysis for the
Physical Sciences (New York: McGraw-Hili), Chapter 6.

14.3 General Linear Least Squares

An immediate generalization of the previous section is to fit a set of dat
points {z;, ) to a model which is not just a linear combination of 1 and z
(namely a+ bz), but rather a linear combination of any M specified function
of z. For example, the functions could be Lz, 2%, ..., e~ in which case
their general linear combination,

y(2) = a1 + apz + aga® + -+ + apzM 1 (14.3.1)

is a polynomial of degree M —1. Or, the funetions could be sines and cosines:,
in which case their general linear combination can be a harmonic series.
The general form of this kind of model is

M
y(z) =) ok Xi(x)

k=1

where X;(2),...,Xa(z) are arbitrary fixed functions of x, called the basis
Jfunctions.
Note that the functions Xj(z) can be wildly nonlinear functions of z. In

this discussion “linear” only refers to the model’s dependence on its param
eters ay.
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For these linear models we generalize the discussion of the previous sec-
tion by defining a merit function

N 2

X2 - Z ¥i— Eﬁc‘il G,,rch(.’L‘.,') (1433)

.
i=1 ¢

As before o; is the measurement error (standard deviation) of the £t data
joint, presumed to be known. If the measurement errors are not known, they
may all, as before, be set to the constant value o = 1.

Once again, we will pick as best parameters those that minimize y2.
There are several different techniques available for finding this minimum. Two
ire particularly useful, and we will discuss both in this section. To introduce
them and elucidate their relationship, we need some notation,

Let A be a matrix whose N x M components are constructed from the M
basis functions evaluated at the N abscissas z;, and from the N measurement
rors o;, by the prescription

Ay =200 (14.3.4)

The matrix A is called the design matriz of the fitting problem. Notice that
‘general A has more rows than columns, N >M, since there must be more
data points than model parameters to be solved for. {You can fit a stra.ight
ine to two points, but not a very meaningful quintic!) The design matrix is
own schematicaily in Figure 14.3.1.

Also define a vector b of length N by

b = % (14.3.5)

dq

1d denote the M vector whose components are the parameters to be fitted,
.,an, by a

Solution by Use of the Normal Equations

The minimum of {14.3.3) occurs where the derivative of x? with respect
I M parameters a;, vanishes. Specializing equation (14.1.7) to the case of
e model (14.3.2), this condition yields the M equations

i

M
1
0= Z — W — Z anj(:Ei) Xk(m@;) k ]_, e ,M (14.3.6)
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Figure 14.3.1. Design matrix for the least-squares fit of a linear combination of M basi
functions to N data points. The matrix elements involve the basis functions evaluated a
the values of the independent, variable at which measurements are made, and the standar
deviations of the measured dependent varizble. The measured values of the dependen
variable do not enter the design matrix. :

Interchanging the order of summations, we can write (14.3.6) as the matri>
equation

M
D ensa; = By
=1

where

N
Qg = Z M or equivalently [0 = AT . A

: (2
=1 :

an M x M matrix, and

N
Br = Z g'f)(;k—g(%l or equivalently (8] = AT . b (14_3_?
=1

T

a vector of length M.

The equations (14.3.6) or (14.3.7) are called the normal equations of th
least-squares problem. They can be solved for the vector of parameters a b
the standard methods of Chapter 2, notably LU decomposition and backsub
stitution or Gauss-Jordan elimination. In matrix form, the normal equatior
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can be written as either
o) -a=[8] oras (AT A)-a=AT b (14.3.10)

The inverse matrix Cy, = [a];,cl is closely related to the probable (or,
ore precisely, standard) uncertainties of the estimated parameters a. To
estimate these uncertainties, consider that

a; = Z[a];clﬁk = Z Cjk Z _Ehgz_‘z_ (14.3.11}
k=1 k=1 fo= [

nd that the variance associated with the estimate a; can be found as in
14.2.7) from

da; \* 7
20, — 2 3
o(a;) ,- 101 ( 1:) (14.3.12)

ote that oy, is independent of y;, so that

a(_lj — ol 2
e ,; Cix X (zi)/o; (14.3.13)
onsequently, we find that
M M N
KNil2) X (z;
o*(a5) =3 > CiuCp Z%*wk( ‘22 (=) (14.3.14)
k=1 =1 =1 3

The final term in brackets is just the matrix [@]. Since this is the matrix
verse of [C], (14.3.14) reduces immediately to

o?(a;) = Cy; (14.3.15)

In other words, the diagonal elements of [C] are the variances (squared
certainties) of the fitted parameters a. Tt should not surprise you to learn
at the off diagonal elements Oy are the covariances between a; and ay
f. 14.2.10); but we shall defer discussion of these to §14.5,
We will now give a routine that implements the above formulas for the
Scheral linear least-squares problem, by the method of normal equations,
ince we wish to compute not only the solution vector a but also the co-
Hance matrix [C], it is most convenient to use Gauss-Jordan elimination

[

et
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(routine gaussj of §2.1) to perform the linear algebra. The operation count,
in this application, is no larger than that for LU decomposition. If you have
no need for the covariance matrix, however, you can save a factor of 3 on
the linear algebra by switching to LU decomposition, without computation
of the matrix inverse, _

We need to warn you that the solution of a least-squares problem directly .
from the normal equations is rather susceptible to roundoff error. An alter
native, and preferred, technique involves QR decomposition {§11.3 and §11.6
of the design matrix A. This is essentially what we did at the end of §14.2 for.
fitting data to a straight line, but without invoking all the machinery of QR
to derive the necessary formulas. Later in this section, we will discuss other:
difficulties in the least-squares problem, for which the cure is singular value
decomposttion (SVD), of which we give an implementation. It turns out tha
SVD also fixes the roundoff problem, so it is our recommended technique fo:
all but “easy” least-squares problems. It is for these easy problems that th
following routine, which solves the normal equations, is intended.

The routine below introduces one bookkeeping complication that is quit
useful in practical work. Frequently it is a matter of “art” to decide which
parameters az in a model should be fit from the data set, and which should b
held constant at fixed values, for example values predicted by a theory or mea
sured in a previous experiment. One wants, therefore, to have a convenie
means for “freezing” and “unfreezing” the parameters ay. In the followin:
routine the total number of parameters ay, is denoted ma (called M above)
while mfit is the number of parameters which are to be adjusted in minimiz
ing the best fit. As input to the routine, you supply a list 1ista. The firs
mfit elements of 1ista contain the numbers of the parameters that are to
adjusted. The remaining ma—nfit parameters will be held fixed at their inpu
values. For example, if ma=8, mfit=4, and listal1..4] contains the num
bers 3,1,7,5, then the parameters aa, a1, ay, as will be adjusted. The othe
parameters (69,04, as, ag) will be held fixed at their input values; notice tha
you must therefore initialize these input values before calling the progr
On output, any frozen variable will have its variance and all its covariance
set to zero in the covariance matrix.

static float sqrarg;
#define SQR(a) (sqgrarg=(a),sqrarg*sqrarg)

void 1fit(x,y.sig,ndata,a,ma,lista,mfit,covar,chisg,funcs)
int ndata,ma,lietal] ,mfit;
float xf],y[].sigfl al[l,+**covar,*chisq;
void {#funcs){); [* ANSI: veid (*funcs){float,float *,int); */
Glven a set of points x[1. ndatal, y[1..ndatal with Individual standard deviations give
sigli. .ndata], use x? minimization to determine mfit of the coefficients af1. .ma] of a fu
tlon that depends linearly on a, y = ¥ ,a;xafunc;(x). The array lista[l..ma] renumbers th
parameters so that the first mfit elements correspond to the parameters actually being d
mined; the remaining ma-mfit eferments are held fixed at their input values. The progra
turns values for the ma fit parameters &, x° == chisq, and the elements [1. .mfit] [1. .mfi
the covariance matrix covar[i. .ma}[1..nal. The user supplies a routine funes (x, afunc
that returns the ma basis functions evaluated at x¥ =x In the array afunc[i..ma].
{

int k,kk,j,ihit,i;

float ym,wt,sum,sig2i,#+*beta,*afunc;

void gaussj(),covert(),nrerror(},free_natrix(),free_vector();
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float **matrix{),*vector(};

beta=matrix{l,ma,1,1);
afunc=vector{i,ma);
kk=mfit+1; Check to see that lista contains a proper permutation of
for (j=1;j<=ma;j++) { the coefficlents and fill in any missing members.
1hit=0;
for (k=1 ;k<=mfit;k++)
if (listalk] == j) ihit++;
if (ihit == 0}
lista[kk++]=j; .
elge if (ihit > 1) nrerror("Bad LISTA permutation in LFIT-1"};
}
it (xk != (ma+1)) nrerror("Bad LISTA permutation in LFIT-2");
for (j=1;j<=mfit;j++) { Initialize the (symmetric) matrix.
for (k=1;k<=mfit;k++) covar[jl[k]=0.0;
betal}j][1]1=0.0;

}
for {i=1;i<~ndata;i++) { Loop over data to accumulate coefficients of the normal
(*funcs) (x[i],afunc,ma); equations.
yuey [1];
if (mfit < ma) Subtract off dependences on known pieces of the fitting
for (j=(mfit+1);j<=ma;j++) function.

ym -= al[lista[j}]«afunc{listaljl];
8ig2i=1.0/8QR{sig[il);
for (j=1;j<=mfit;j++) {
wh=afunc{lista[j]1]*sig2i;
for (kei;k<=j;k++}
covar{j] [k] += wt*afune[listal[k]];
betali]l [1] += ym*wt;

}
}
if (mfit > 1}

for (j=2;j<=mfit;j++} Fitl in 2bove the diagonal from symmetry.

for (k=1;k<=j=1:k++)
covar {k] [j1=covar[jlIk];

gaussj (covar,mfit,beta,1l); Matrlx solution.
for (J=1;j<=nfit;j++) allistaljli=betalj][1]1; Partition soiutlon to appropriate
*chisq=0.0; coefficlents a.
for (i=1;i<=ndata;i++) { Evaluate x? of the fit.

(#funcs) (x[i],afune,.ma);
for (sum=0.0,j=1;j<=ma;j++} sum += a[jl*atunc[jl;
*chisq += SQR({y[i]-sum)/siglil);

}

covert(covar,ma,lista,nfit); Sort covariance mattix 1o true arder of fitting
fres_vector{afunc,1,ma); coefficients.
free_matrix(beta,1i,ma,1,1)};

~ That last call to a function covsrt is only for the purpose of spreading
he mfitxmfit covariances back into the full maXma covariance matrix, sorted
into the proper rows and columns and with zero variances and covariances set
or variables which were held frozen. Thus, e.g., the variance of variable a;
ill be in its natural place covarid] [4]. If, instead, you are willing to look
p variances via the index 1ista, then you can omit the call. In that case,
.., the variance of variable number lista[y] will be in covar([y][7].

The function covsrt is as follows.
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void covert(covar,ma,lista,mfit)
float *#covar,;

int ma,lista{l ,mfit;

Given the covariance matrix covar[1. .mal [1. .ma] of a fit for mfit of ma total parameters, and .
their ordering listall. .ma], repack the covarlance matrix to the true order of the parameters.
Elements associated with fixed parameters will be zero.

{
int i,j;
float swap;
for (j=1;j<ma;j++) Zero alt elements below diagonal.
for (i=j+1;i<=ma;i++) covar[i][j]}=0.0;
for (i=f1;i<mfit;i++) Repack off-diagonal elements of fit into correct loca-;
for (j=i+l;j<=mfit;j++) { tions below diagonal.
if (lista[j] > listafil)
covar [Listaljl] [listalill=covar[i}[j];
else
covar[listalill [listaljll=covarfil [j1;
swap=covarfi] [1]; Tempararily store orlginal diagonal elements in top row,
for {j=1;j<=ma:j++) { and zero the diagona. :
covar{i} [j1=covarfji[j];
covar[§1131=0.0;
}
covar[lista{1]] [1ista[1]}=swap; Now sort elements into proper order on diagonal.
for (j=2;j<=mfit;j++) covar[lietaljl][lista(jl]=covarfi][}];
for {j=2;j<=ma;j++) Finaily, fill in above diagonal by symmetry,
for (i=1;i<=j-1;i++) covarlil [jl=covar[jl1Ei];
}

Solution by Use of Singular Value Decomposition

In some applications, the normal equations are perfectly adequate f
linear least-squares problems. However, in many cases the normal equati
are very close to singular. A zero pivot element may be encountered dur
the solution of the linear equations (e.g. in gaussj), in which case you get 1o
solution at all. Or a very small pivot may occur, in which case you typic
get fitted parameters a; with very large magnitudes that are delicately (an
unstably) balanced to cancel out almost precisely when the fitted function
is evaluated. :

Why does this commonly occur? The reason is that, more often tha
experimenters would like to admit, data do not clearly distinguish betweeD
two or more of the basis functions provided, Tf two such functions, or two di
ferent combinations of functions, happen to fit the data about equally well -
or equally badly — then the matrix [¢], unable to distinguish between then
neatly folds up its tent and becomes singular. There is a certain math
matical irony in the fact that least-squares problems are both overdetermi
(mumber of data points greater than number of parameters} and underd
termined (ambiguous combinations of parameters exist); but that is ho
frequently is. The ambiguities can be extremely hard to notice a prior
complicated problems,

Enter singular value decomposition (SVD). This would be a good &
for you to review the material in §2.9, which we will not repeat here..
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e case of an overdetermined system, SVD produces a solution that is the
st approximation in the least-squares semse, ¢f. equation (2.9.10). That
& exactly what we want. In the case of an underdetermined system, SVD
oduces a solution whose values (for us, the az’s) are smallest in the least-
iquares sense, cf. equation (2.9.8). That is also what we want: when some
iombination of basis functions is irrelevant to the fit, that combination will be
driven down to a small, innocuous, value, rather than pushed up to delicately
sanceling infinities.

In terms of the design matrix A (equation 14.3.4) and the vector b (equa-
jon 14.3.5), minimization of x% in (14.3.3) can be written as

find a  which minimizes x®=|A-a—b|* (14.3.16)

Comparing to equation (2.9.9}, we see that this is precisely the problem which
outines svdcmp and svbksb are designed to solve. The solution, which is
iven by equation (2.9.12), can be rewritten as follows: If U and V enter
he SVD decomposition of A according to equation (2.9.1), as computed by
s'fdcmp, then let the vectors Uy # = 1,..., M denote the columns of U (each
me a vector of length N); and let the vectors V3¢ = 1,..., M denote the
olumns of V (each one a vector of length M). Then the solution (2.9.12) of
he least-squares problem (14.3.16) can be written as

M
Uy b
a=y (L) Vi (14.3.17)

where the w; are, as in §2.9, the singular values calculated by svdemp.
Equation (14.3.17) says that the fitted parameters a are linear combina-
ns of the columns of V, with coefficients obtained by forming dot prod-
cts of the columns of U with the weighted data vector (14.3.5). Though it
beyond our scope to prove here, it turns out that the standard (loosely,
‘probable”) errors in the fitted parameters are also linear combinations of the
olumns of V. In fact, equation (14.3.17) can be written in a form displaying
hese errors as

M
U -b i 1
Z ( (). )V(i):l iw_lv(l)i...iEV(M} (14.3.18)

lere each + is followed by a standard deviation. The amazing fact is that,
composed in this fashion, the standard deviations are all mutually inde-
ndent (uncorrelated). Therefore they can be added together in root-mean-
uare fashion. What is going on is that the vectors V ;) are the principal
es of the error ellipsoid of the fitted parameters a (see §14.5).
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It follows that the variance in the estimate of a parameter a; is given by

M M N2
o*(a;) = E%[V(z:;]ﬁ =Y (%) (14.3.19)

i=1 * i=1

whose result should be identical with (14.3.14}. As before, you should not be
surprised at the formula for the covariances, here given without proof,

M
Covlag,ax) =Y (@) (14.3.20)

- Wy

We introduced this subsection by noting that the normal equations can
fail by encountering a zero pivot. We have not yet, however, mentioned how.
SVD overcomes this problem. The answer is: If any singular value w; is zero,’
its reciprocal in equation (14.3.18) should be set to zero, not infinity. {Com-:
pare the discussion preceding equation 2.9.7). This corresponds to adding
to the fitted parameters a a zero multiple, rather than some random large:
multiple, of any linear combination of basis functions which are degenerate in_
the fit. It is a good thing to do! _

Moreover, if a singular value w; is nonzero but very small, you should
also define fs reciprocal to be zero, since its apparent value is probably an
artifact of roundofl error, not a meaningful number. A plausible answer &
the question “how small is small?”, is to edit in this fashion all singular values:
whose ratio to the largest singular value is less than N times the machin
precision €. (You might argue for VN, or a constant, instead of N as th
multiple; that starts getting into hardware-dependent questions.)

There is another reason for editing even additional singular values, one
large enough that roundoff error is not a question. Singular value decomposi-.
tion allows you to identify linear combinations of variables which just happen
not to contribute much to reducing the x? of your data set. Editing these ¢
sometimes reduce the probable error on your coefficients quite significantly,
while increasing the minimum 2 only negligibly. We will learn more abou
identifying and treating such cases in §14.5. In the following routine, the poin;
at which this kind of editing would occur is indicated.

Generally speaking, we recommend that you always use SVD techmque
instead of using the normal equations. SVI)’s only significant disadvantag
is that it requires an extra array of size N X M to store the whole desig
matrix. This storage is overwritten by the matrix U. Storage is also require¢.
for the M x M matrix V, but this is instead of the same-sized matrix for
the coefficients of the normal equations. SVD can be significantly slower tha!
solving the normal equations; however its great advantage, that it {theoreb
cally) cannot foil more than makes up for the speed disadvantage.

In the routine that follows, the matrices u, v and the vector w are input:
working space. The logical dxmensmns of the problem are ndata data p0111_t
by ma basis functions (and fitted parameters). If you care only about £h
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values a of the fitted parameters, then u, v, w contain no useful information
on output. If you want probable errors for the fitted parameters, read on,

#define TOL 1.0e-5

vyoid svdfit(x,y,sig,ndata,a,ma,u,v,w,chisq,funca)}

float x[1.y0[],eigl),all,**u,**v,wll, *chisq;

int ndata,ma;

‘void (*funce)(); [+ ANSI: void (#funcs) (float,float *,int); */

‘Given a set of points x[1..ndata], y[1..ndatal with individual standard deviations given
by sigfl..ndatal, use x? minimization to determine the coefficients a[1..ma] of the fitting
nction ¥ = 3_,a;xafunc;{x}. Here we sclve the fitting equations using singular value decom-
‘position of the ndata by ma matrix, as in §2.9. Arraysulf..ndatal{i. ma], v[1..ma]l[1..ma],
‘and wil. .mal] provide workspace on input; on output they define the singular value decom-
psition, and can be used to obtain the covariance matrix. The program returns values for
he ma fit parameters a, and le chieq. The user suppiies a routine funca(x,afunc,ma} that
‘returns the ma basis functions evaluated at x =x in the array afuncfi. .ma]l.

1

int j,i;

float wmax,tmp,thresh,sun,*b,*afunc,*vector();

void svdemp(),svbkeb() ,free_vector();

b=vector(i, ndata);
afunc=vector(l,ma);
for (i=1;i<=ndata;i++) { Accumulate coefficlents of the fitting matyix.
(*funca) (x[1i],afunc,ma);
tmp=1.0/sig[il;
for (j=1;j<=ma;j++) u{il [j1=afunc[jl+tmp;
bl[il=y[i]*tmp;

svdcmp(u,ndata,ma,w,v); Singutar value decomposition.
wnax=0.0; Edit the singular values, given TOL from the #define
for (j=1;j<=ma;j++} statement, between here ...
it (wlj] > wmax) wmax=w[jl;
thresh=TOL*wnax;
for (j=1;j<=ma;jt++)
if (wlj] < thresh) w[j]=0.0; ...and here.
svbksb(u,w,v,ndata,ma,b,a);
*chieq=0.0; Evaluate chi-square.

for {i=1;i<=ndata;i++) {
(*funca) (x[i] , afunc,ma) ;
for (sum=0.0,j=1;j<=ma;j++) sum += aljl*afunc[j];
schisg += (tmp=(y[i]-sum}/aiglil,tmp*tnp);

free_vector(afunc,i,ma);
free_vector(b,1,ndata);

Feeding the matrix v and vector w output by the above program into
the following short routine, you easily obtain variances and covariances of
he fitted parameters a. The square roots of the variances are the standard
eviations of the fitted parameters. The routine straightforwardly implements
quation (14.3.20) above, with the convention that singular values equal to
ro are recognized as having been edited out of the fit.
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void svdvar(v,ma,w,cvm)
float *#v,wf], xtcvm;
int ma;

To evaluate the covariance matrix cva[i. .mal [1..ma] of the fit for ma parameters obtained by
svdfit, call this routine with matrices v[1..mal[1. .mal, wl[l..mal as returned from svdfit.

int k,j,i;
float sum,#*wti,*vector();
void free_vector();

wti=vector(i,ma};
for (i=1;i<=ma;i++) {
wtili1=0.0;
if (wlil) wtilil=1.0/(wlil*w{il);

} .
for (i=1;i<=ma;i++) { Sum contributions to covariance matrix (14.3.20).
for (j=1;j<=i;j++} { -
for (pum=0.0,k=1;k<=ma;k++) sum += v[i] [K]*v[j] [kI*wtilk};
cvm{il [i]1=cvm[i] [§]1=sum;
}

free_vector{wti,1,ma);

Examples

Be aware that some apparently nonlinear problems can be expressed 50
that they are linear. For example, an exponential model with two parameters
a and b,

y(x) = aexp(—bx)
can be rewritten as

logly(z)] = ¢ — bz

which is linear in its parameters ¢ and b.
Also watch out for “non-parameters,” as in

y(z) = aexp(-bz + d)

Here the parsmeters ¢ and d are, in fact, indistinguishable. This is a g
example of where the normal equations will be exactly singular, and W
SVD will find a zero singular value. SVD will then make a “least-squal
choice for setting a balance between a and d (or, rather, their equivalent
the linear model derived by taking the logarithms). However — and 1
true whenever SVD gives back a zero singular value — you are better advis¢
to figure out analytically where the degeneracy is among your basis func on
and then make appropriate deletions in the basis set.
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Here are two examples for user-supplied routines funcs. The first one is
rivial and fits a general polynomial to a set of data: ‘

id fpoly{x,p.np)

$loat x,pll;

int ap;

Eltting routine for a polynomial of degree NP-1, with coefficients in the array p[1..np].
I

int j:

p[1]=1.0}
for (j=2;j<=np;j++) pljl=plj-11=x;

~ The second example is slightly less trivial. It is used to fit Legendre
'o_lynomials up to some order n1-1 through a data set.

oid fleg(x,pl.nl)

loat x,plll:

t nl;

tting routine for an expansion with nl Legendre polynomiais pl, evaluated using the recur-
nce reiation as in §4.5.

int j.
float twox,f2,f1.,d;

pllil=1.0;
pli2]=x;
if (nl > 2) {
twox=2.0%x;
£2=x;
d=1.0;
for (j=3;j<=nl;j++) {
fi=d;
d += 1.0;
£2 += twox;
pliji=(£2+p1[j~1]-f1xplj-21)/d;

EFERENCES AND FURTHER READING:

Bevington, Philip R. 1969, Data Reduction and Error Analysis for the
Physical Sciences (New York: McGraw-Hill), Chapters 8,9.

Lawson, Charles L., and Hanson, Richard J. 1974, Solving Least Squares
Problems (Englewood Cliffs, N.J.: Prentice-Hal}.

Forsythe, George E., Malcolm, Michael A., and Moler, Cleve B. 1977,
Computer Methods for Mathematical Computations (Englewood
Cliffs, N.J.: Prentice-Hail}, Chapter 9.
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14.4 Nonlinear Models

We now consider fitting when the model depends nonlinearly on the set of
M unknown parameters ax, k = 1,2,..., M. We use the same approach as in
previous sections, namely to define a x? merit function and determine best-fi
parameters by its minimization. With nonlinear dependences, however, the
minimization must proceed 1terat1vely Given trial values for the parameters,
we develop a procedure that improves the trial solution. The procedure is
then repeated until x2 stops (or effectively stops) decreasing.

How is this problem different from the general nonlinear function min-
imization problem already dealt with in Chapter 10?7 Superficially, not at
all: Sufficiently close to the minimum, we expect the x? function to be well
approximated by a quadratic form, which we can write as '

Xz(a)mq—d-a—l-%a-D-a (1441)

where d is an M-vector and D is an M x M matrix. (Compare equation
10.6.1.) If the approximation is a good one, we know how to jump from the
current irial parameters ag,, to the minimizing ones a,,;, in a single les
namely

Amin = Aeyr T D_I ' [_VX2 (acur)] (14.4.2)

(Compare equation 10.7.4, and reread the discussion leading up to it.)

On the other hand, (14.4.1) might be a poor local approximation to the
shape of the function that we are trying to minimize at ag,,. In that case,
about all we can do is take a step down the gradient, as in the steepest
descent method (§10.6). In other words,

Apert = Acur — constant X VX2 (acu,,) (14.4_3

where the constant is small enough not to exhaust the downhill direction. =

To use (14.4.2) or (14.4.3), we must be able to compute the gradient ¢
the %% function at any set of parameters a. To use (14.4.2) we also need the
matrix D, which is the second derivative matrix (Hessian matrix) of the X'
merit function, at any a.

Now, this is the crucial difference from Chapter 10: There, we had no w
of directly evaluating the Hessian matrix. We were only given the ability
evaluate the function to be minimized and (in some cases) its gradient. Ther
fore, we had to resort to iterative methods net just because our function w
nonlinear, but also in order to build up information about the Hessian matri
Sections 10.7 and 10.6 concerned themselves with two different techniques f
building up this information.



14.4 Nonlinear Models | 541 |

Here, life is much- simpler. We know exactly the form of x?, since it is
hased on a model function that we ourselves have specified. Therefore the
Hessian matrix is known to us. Thus we are free to use (14.4.2) whenever we
¢are to do so. The only reason to use (14.4.3) will be failure of (14.4.2) to
Improve the fit, signaling failure of (14.4.1} as a good local approximation,

Calculation of the Gradient and Hessian

The model to be fitted is

y = y(z; a) (14.4.4)
and the x? merit function is
2 X Ty~ ylesa)]’
x*(a) =) - (14.4.5)
i=1 t

The gradient of x2 with respect to the parameters a, which will be zero at
he x? minimum, has components

Z[yz y(zvz, aldylwiia) oy (14.4.6)

Bak 3(13,;
=1

aking an additional partial derivative gives

92y2 N1 [dy(x;a) Oy(za d?y(z;;a
_—szz—[ y‘gak ) E?a; )—[yi—y(x.i;a)]mg&{&t—k) (14.4.7)

82X2

1
=——— =-—5 14.4.8
ﬁk 2 Bak kel 2 8&;‘;5&; ( )

aking [0] = 4D in equation (14.4.2), in terms of which that equation can
Tewritten as the set of linear equations

M
Zakl dap = Px (14.4.9)

T
Hiad

H
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This set is solved for the increments §q; that, added to the current approx:
imation, give the next approximation. In the context of least-squares, th
matrix [a}, equal to one-half times the Hessian matrix, is usually called th
curveture malriz.

Equation (14.4.3), the steepest descent fermula, translates to

Sa; = constant X 5 (14.4.16

Note that the components oy of the Hessian matrix (14.4.7) depend bot
on the first derivatives and on the second derivatives of the basis function
with respect to their parameters. Some treatments proceed to ignore th
second derivative without comment. We will ignore it also, but only afteé’j
few conmuments.

Second derivatives occur because the gradient (14.4.6) already has a &
pendence on dy/day, so the next derivative simply must contain terms in
volving 8%y/8a;0ax. The second derivative term can be dismissed when it
zero (as in the linear case of equation 14.3.8), or small enough to be negligibl
when compared to the term involving the first derivative. It also has an add
tional possibility of being ignorably small in practice: The term multiplyin
the second derivative in equation (14.4.7) is [y — y(z;;a)]. For a successfu
meodel, this term should just be the random measurement error of each poin
This error can have either sign, and should in general be uncorrelated wit,
the model. Therefore, the second derivative terms tend to cancel out whe
summed over 1.

Inclusion of the second-derivative term can in fact be destabilizing if th
model fits badly or is contaminated by outlier points that are unlikely to b
R offset by compensating points of opposite sign. From this point on, we

P always use as the definition of ay; the formula
Y. 1 [0y(z;; ) Oy(zi;a)
= = kL b 14.4.11
o ; p [ Bar By { 1]

This expression more closely resembles its linear cousin (14.3.8). You shoul
understand that minor (or even major) fiddling with [o] has no effect at all 0
what final set of parameters a is reached, but only affects the iterative ro
that is taken in getting there. The condition at the x? minimum, that Bz
for all k, is independent of how [&] is defined.

Levenberg-Marquardt Method

Marquardt has put forth an elegant method, related to an earlier sugges
tion of Levenberg, for varying smoothly between the extremes of the inver
Hessian method (14.4.9) and the steepest descent method (14.4.10). The latte
method is used far from the minimum, switching continuously to the form
as the minimum is approached. This Levenberg—Marquardt method (also calle
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farquardt method) works very well in practice and has become the standard
f nonlinear least-squares routines.

The method is based on two elementary, but important, insights. Con-
der the “constant” in equation (14.4.10). What should it be, even in order
f magnitude? What sets its scale? There is no information about the answer
i:the gradient. That tells only the slope, not how far that slope extends.
Marquardt’s first insight is that the components of the Hessian matrix, even
it they are not usable in any precise fashion, give some information about the
rder-of-magnitude scale of the problem.

© The quantity x? is nondimensional, i.e. is a pure number; this is evident
om its definition (14.4.5). On the other hand, 8 has the dimensions of 1/ay,
‘hich may well be dimensional, i.e. have units like em™!, or kilowatt-hours,
whatever. {In fact, each component of F; can have different dimensions!)
he constant of proportionality between f; and §ay must therefore have the
imensions of a. Scan the components of [a] and you see that there is only
fie obvious quantity with these dimensions, and that is 1/, the reciprocal
fthe diagonal element. So that must set the scale of the constant. But that
le might itself be too big. So let’s divide the constant by some (nondimen-
onal) fudge factor A, with the possibility of setting A > 1 to cut down the
tep. In other words, replace equation (14.4.10) by

da; = —ﬂ; or Aayda; = G (14.4.12)
Aoy

s necessary that ay; be positive, but this is guaranteed by definition (14.4.11)
‘another reason for adopting that equation.

Marquardt’s second insight is that equations (14.4.12) and (14.4.9) can
combined if we define a new matrix o by the following prescription

ol = ajj(l + /\)

14.4.13
a;‘k = Gk (4 #k) ( )

M
> oy bay = B (14.4.14)
=1

hen ) is very large, the matrix o/ is forced into being diagonally dominant,
quation (14.4.14) goes over to be identical to (14.4.12). On the other
and, as A approaches zero, equation (14.4.14) goes over to (14.4.9).

Given an initial guess for the set of fitted parameters a, the recommended
rquardt recipe is as follows:

¢ Compute x%(a).

.o Pick a modest value for A, say A = 0.001.
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e (1) Solve the linear equations (14.4.14) for §a and evaluate x*(a+6a),

o If x*(a + 6a) >x%(a), increase A by a factor of 10 (or any other
substantial factor) and go back to (}).

o If x*(a + 6a) < x%(a), decrease X by a factor of 10, update the trial
golution a «— a + éa, and go back to (1).

Also necessary is a condition for stopping. Iterating to convergence (tcj
machine accuracy or to the roundoff limit) is generally wasteful and unneces-
sary since the minimum is at best only a statistical estimate of the parameters
a. As we will see in §14.5, a change in the parameters that changes 2 by an
amount <€ 1 is never statistically meaningful.
Furthermore, it is not uncommon to find the parameters wanderi
around near the minimum in a flat valley of complicated topology. The re
son is that Marquardt’s method generalizes the method of normal equations
(§14.3), hence has the same problem as that method with regard to nea
degeneracy of the minimum. Outright failure by a zero pivot is possible, b
unlikely. More often, a small pivot will generate a large correction which
then rejected, the value of A being then increased. For sufficiently large
the matrix (o] is positive definite and can have no small pivots. Thus t
method does tend to stay awsay from zero pivots, but at the cost of a tenden
to wander around doing steepest descent in very un-steep degenerate valle
These considerations suggest that, in practice, one might as well stop it
ating on the first or second occasion that x? decreases by a negligible amo
say either less than 0.1 absolutely or (in case roundoff prevents that being
reached) some fractional amount like 10~2. Don'’t stop after a step where
inereases: that only shows that A has not yet adjusted itself optimally.
Once the acceptable minimum has been found, one wants to set A
and compute the matrix

[C] =[]

which, as before, is the estimated covariance matrix of the standard errors il
the fitted parameters a (see next section).

The following pair of functions encodes Marquardt’s method for nonlme
parameter estimation. Much of the organization matches that used in 1f
of §14.3. In particular the array lista should have as its first elements
list of the mfit parameters, out of ma total, that are desired to be fitted, the
remaining parameters being held at their input values. :

The routine mrgmin performs one iteration of Marquardt’s method _
is first called {once) with alamda < 0, which signals the routine to initiall
alamda is set on the first and all subsequent calls to the suggested value
A for the next iteration; a and chisq are always given back as the best
rameters found so far and their xz. When convergence is deemed satisfacto
set alamda to zero before a final call. The matrices alpha and covar (whi
were used as workspace in all previous calls) will then be set to the curva
and covariance matrices for the converged parameter values. The argum
alpha a, and chisq must not be modified between calls, nor should al
be, except to set it to zero for the final call. When an uphill step is take
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chisq and a are given back with their input (best) values, but alanda is set
to an increased value.

The routine mrqmin calls the routine mrqcof for the computation of the
matrlx [e] {equation 14.4.11) and vector 8 (equations 14.4.6 and 14.4.8). In
turn mrqcof calls the user-supplied routine funcs(x,a,y,dyda) which for
input values x = z; and a = a calculates the model function y = y(z;;a) and
the vector of derivatives dyda = dy/day.

void mrqmin(x,y, sig,ndata,a,ma,lipta,mfit,covar,alpha,chiaq,funcs,alanda)

$1oat x[],y[].sigl].a[],**covar,=+alpha,*chisq,*alanda;

i{nt ndata,ma,listaf],mfit;

oid (¥funcs){(};

venberg-Marquardt method, attempting to reduce the value x? of a fit between a set of
ints x{1..ndata}, y{1..ndata] with individual standard deviations sig[1..ndata], and a
nonkinear function dependent on coefficients a[l..ma]. The array lista[i, .ma} numbers the
barameters a such that the first nfit elements correspond to values actually being adiusted;
the remaining ma-mfit parameters are held fixed at their input value. The program returns
current best-fit values for the ma fit parameters a, and x? == chisq. The [1..m2it] [1. . .mfit]
elements of the arrays covar[l..mal[i..mal, alphali..mal[1..mal are used as working
ace during most iterations. Supply a routine funce(x,a,yfit,dyda,ma) that evaluates the
fitting function yfit, and its derivatives dydafl..ma] with respect to the fitting parameters
‘at x. On the first call provide an Initial guess for the parameters a, and set alamda<Q
¢ initialization (which then sets alamda=,001). If a step succeeds chieq becomes smalier
and alamda decreases by a factor of 10. If a step fails alanda grows by a factor of 10, You
ust call this routine repeatedly until convergence is achieved. Then, make one final cal with
landa=0, SO that covar returns the covariance matrix, and alpha the curvature matrix.

int k.kk,},ihit;

static float *da,*atry,*+*oneda,*beta,ochinq;

float *vector(),**matrix(};

© void mrqcof(),gaussj{),covert() ,nrexror(),free_matrix() ,free_vector();

if (*alamda < 0.0) { Inltlallzation,
oneda=matrix(l,mfit,1,1); These variabies are not freed untll the last call, when
atry=vector(l,ma}; alamda = ¢.

da=vector(i,ma);
beta=vector(l,ma);

Ki=mfit+1;
for (j=1:j<=ma;j++) { Does 1ista contain a proper permutation of the coef-
ihit=0; ficients?

for (k=i;k<=mfit;k++)
it (listalk] == j) ihit++;
it (ihit == 0)
lista[kk++]=j;
elze if (ihit > 1) nrerror("Bad LISTA permutation in MROMIN-1"};
}
it (kk != ma+1) nrerror("Bad LISTA permutation in MRQMIN-2"):
#alamda=0,001;
mrgcof (x,y,sig,ndata,a,na,lista,mfit,alpha,beta,chisq,funcs);
ochisg=(*chiag);

}

for (j=1;j<=mfit;j++) { Alter linearized fltting matrix, by augmenting diagonal
tor (k=1;k<=mfit;k++) covar[j] [kl=alphalj][k];: elements,
covar{j]l [j1=alphalj] [j1#(1.0+(*alanda));
oneda{j] [1]l=betalj]:

}

gaussj{covar,mfit,oneda,1); Matslx solution.

for (j=1;j<=mfit;j++)
daljl=onedafj][1];

covsrt(covar,ma,lista,mfit);

if (#alamda == 0.0) { Once converged evaluate covarlance matrix with alamda=0.
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free_vector(beta,l,ma);
free_vector(da,1l,ma);
free_vector{atry,1,ma);
free_matrixf{oneda,1,mfit,1,1);
return;
}
for (j=1;j<=ma;j++) atryl[jl=aljl;
for (j=1;j<=mfit;j++) Did the trlal succeed?
atry[lista[j]] = aflistaljl1l+dafj];
erqcof (x,y,eig,ndata,atry,ma,lista,mfit, covar,da, chisq,funcsa);
if (*chisq < ochieq) { Success, accept the new solution.
*alamda *= 0.1,
ochieq=(*chiaq);
for (j=1;j<=mait;j++) {
for (k=1;k<=mfit;k++) alphalj] (k]=covar[j][k];
betaljl=daljl;
a[lista[j]l]l=atry[listaljll;
}
} else { Failure, increase alamda and retusn.
#alamda *= 10.0;
#chisg=ochisgqy;
¥
return;

Notice the use of the routine covsrt from §14.3. This is only for rearran
ing the covariance matrix covar into the order of all ma parameters. If yo
are willing to lock up nonzero components corresponding to the mfit fitted
variables through the index lista, then you can omit all reference to covsr
The above routine also makes use of

void mrycof(x,y, gig,ndata,a,ma,lista,nfit,alpha,beta,chisq,funcsa)
float x[],y[l,sigl],all,*+alpha,betal],*chisq;
int ndata,ma,lieta[l,mfit;
void (*funcs)(); /% ANSI: void (*funcs){float,float *,float *,float *,int)
Used by mrgmin to evaluate the linearized fitting matrix alphafi. .mfit] [1. .mfit], and vect
beta[l. .mfit] as in (14.4.8).
{
int k,j,1;
float ymod,wt,sig2i,dy,*dyda,*vector();
void free_vector();

dyda=vector(l,ma);
for (j=1:;j<=mfit;j++) { Initialize (symmetric) alpha, beta.
for (k=1;k<=j;k++) alphal[j] [k]=0.0:
betalj1=0.0;
}
*chisq=0.0;
for (i=1;i<=ndata;i++) { Summation loop over alt data.
(+funce) (x[i],a,&ymod,dyda,ma)} ;
sig2i=1.0/(siglil*eiglil};
dy=y[i]-ymod;
for (j=1;j<=mfit;j++) {
wt=dyda[listal[ji]*sig2i;
for (k=1;k<=j k++)
alphafi] [k] += wtxdydallistalkl];
betalj]l += dy*wt;
}
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(#chisq) += dy*dy+sig2i; And find x2.

}

for {j=2;j<=mfit;j++) Fill in the symmetric side.
for (k=1;k<=j-1;k++) alphalk] [jl=alphalj]lk];
free_vector(dyda,1,ma);

Example

- The following function fgauss is an example of a user-supplied function
funcs. Used with the above routine mrgmin (in turn using mrqcof, covsrt,
d gaussj) it fits for the model

_5 (2B’
y(m)—gBk exp ( e ) (14.4.16)

hich is a sum of K Gaussians, each having a variable position, amplitude, and
idth. We store the parameters in the order By, E), Gy, B, E2,Go, ..., By,
i, G ree

ficlude <math.h>

id fganss(x,a,y,dyda,na)

oat x,a[],*y,dydall;

t na;

(x:;a) Is the sum of na/3 Gausslans (14.4.16). The ampiitude, center, and width of the
1ssians are stored In consecutive locations of a: alil= By, ali+l]= Ei, ali+2]l= G,
: 1, ...,na/3. The dimensions of the arrays are a{i..nal, dyda{l..na]

‘int 1;
float fac,ex,arg;

v=0.0;

for (i=1;i<=na-1;i+=3)
{
: arg={x-a[i+1]}/a[i+2];
ex=exp(-arg*arg) ;
fac=a[i] #ex*2.0xarg;

wy += alil*ex;
dyda[i]=ex;
dyda[i+1l]=fac/ali+2];
dyda[i+2]=fac*arg/ali+2];
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14.5 Confidence Limits on Estimated Model
Parameters

Several times already in this chapter we have made statements about t
standard errors, or uncertainties, in a set of M estimated parameters a.
have given some formulas for computing standard deviations or variances
individual parameters (equations 14.2.9, 14.3.15, 14.3.19), as well as some fo
mulas for covariances between pairs of parameters (equation 14.2.10; remar
following equation 14.3.15; equation 14.4.15).

In this section, we want to be more explicit regarding the precise mean
of these quantitative uncertainties, and to give further information about ho
quantitative confidence limits on fitted parameters can be estimated. Tl
subject can get somewhat technical, and even somewhat confusing, so we
try to make precise statements, even when they must be offered without pro

Figure 14.5.1 shows the conceptual scheme of an experiment which “me;
gures” a set of parameters. There is some underlying true set of parame
Ayrye Which are known to Mother Nature but hidden from the experimen
These true parameters are statistically realized, along with random meas
ment errors, as a measured data set, which we will symbolize as Dg). .
data set D(O) 18 known to the experimenter. He or she fits the data t
model by x? minimization or some other technigue, and obtains measu
ie. fitted, values for the parameters, which we here denote a .

Because measurement errors have a random component, D(O) s
unique realization of the true parameters ay.,.. Rather, there are infini
many other realizations of the true parameters as “hypothetical data s
each of which could have been the one measured, but happened not to be. L
us symbolize these by D1y, D(g), . . .. Each one, had it been realized, would ha
given a slightly different set of ﬁtted parameters, a(1),a(z);- -+ respectiv
These parameter sets a(;) therefore occur with some probability distributi
in the M-dimensional space of all possible parameter sets a. The acty
measured set a(p) is one member drawn from this distribution.

Even more interesting than the probability distribution of a(;) woul
the distribution of the difference ag;) —asrye. This distribution differs from
former one by a translation that puts Mother Nature’s true value at the oti
If we knew this distribution, we would know everything that there is to k
about the quantitative uncertainties in our experimental measurement ay

So the name of the game is to find some way of estimating or approx
mating the probability distribution of a;) — aywe without knowing airue:d
without having available to us an infinite universe of hypothetical data 8

General Case: Confidence Limits by Monte Carlo Simulat

There is really only one way of making the desired estimation. Th
way sometimes comes dressed up with fancy analytical formulas, or some
naked as a purely numerical procedure; but conceptually it is the same int
cases. When various extra mathematical assumptions are known to hol
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re 14.5.1. A statistical universe of data sets from an underlying model. True parameters
o are realized in a data set, from which fitted (observed) parameters ag are obtained.
the experiment were repeated many times, new data sets and new values of the fitted
‘ameters would be obtained.

& way can be proved to give an “accurate” estimate; when they fail, its
timate may be crude. But in either case it is just about the only game in
Here it is:

- Although the measured parameter set a(g is not the true one, let us
sider a fictitious world in which it was the true one. Since we hope that
:measured parameters are not toe wrong, we hope that that fictitious
1d is not too different from the actual world with parameters agp,.. In
ticular, let us hope — no, let us assume -— that the shape of the probability
stribution a(;) — ag) in the fictitious world is the same, or very nearly the
_'e, as the shape of the probability distribution agy — @srue in the real
1d. Notice that we are not assuming that a() and airye are equal; they
certainly not. We are only assuming that the way in which random errors
ter the experiment and data analysis does not vary rapidly as a function of
e; S0 that agg) can serve as a reasonable surrogate.

. Now the distribution of a(;) — aje) in the fictitious world #s within our
ver to caleculate {see Figure 14.5.2). Starting with our parameters a(g), we
stmulate our own sets of “synthetic” realizations of these parameters as
nthetic data sets.” The procedure is to draw random numbers from ap-
priate distributions {cf. §7.2-§7.3} so as to mimic our best understanding
he measurement errors in our apparatus. With such random draws, we
struct data sets with exactly the same numbers of measured points, and
cisely the same values of all control {independent) variables, as our actual
a set Digy. Let us call these simulated data sets D{‘(’;), Dé), .... By con-
iction these are supposed to have exactly the same statistical relationghip
a(g) as the Di;’s have to atrye.

Next, for each D( 7 perform exactly the same procedure for estimation

Jarameters, €.g. x* minimization, as was performed on the actual data to
the parameters a(gy, giving simulated measured parameters a‘(s;), afg), e
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theti ¥ Monte Carlo
synihetic ———= | parameters
data set | min G5
a,
synthetic ®
data set 2 a
actual X fitted .
- arameiers
data set i p .
N
synthetic .
data set 3 > 3
syathetic P
data set 4 > &

Tigure 14.5.2. Monte Carlo simulation of an experiment. The fitted parameters from’
actual experiment are used as surrogates for the true parameters. Computer-generaf
random numbers are used to simulate many synthetic data sets. Each of these is analyz
to obtain its fitted parameters. The distribution of these fitted parameters around
(known) surrogate true parameters is thus studied.

Each simulated measured parameter set yields a point a — ag). SImulat
enough data sets and enough derived simulated mea.surec)l parameters, gt
you map out the desired probability distribution in M dimensions. _
In fact, the ability to do Monte Carlo simulations in this fashion has 1¢
olutionized many fields of modern experimental science. Not only is one able
to characterize the errors of parameter estimation in a very precise way. O
can also try out on the computer different methods of parameter estimatic
or different data reduction techniques, and seek to minimize the uncertainty
of the result according to any desired criteria. Offered the choice betweed
mastery of a five-foot shelf of analytical statistics books and middling ab:
at performing statistical Monte Carlo simulations, we would surely cho
have the latter skill.
Nevertheless, there are a few important analytic results which we W
mention just below,
Rather than present all details of the probability distribution of erro
parameter estimation, it is common practice to summarize the distribution
the form of confidence limits. The full probability distribution is a func
defined on the M-dimensional space of parameters a. A confidence region:
confidence interval) is just a region of that M-dimensional space (hopefully
small region) that contains a certain (hopefully large) percentage of the t
probability distribution. You point to a confidence region and say, e.g., there
is a 99 percent chance that the true parameter values fall within this regi
around the measured value.” e
It is worth emphasizing that you, the experimenter, get to pick b
the conﬁdence level {99 percent in the above example), and the shape of
confidence region. The only requirement is that your region does include
stated percentage of probability. Certain percentages are, however, cust
ary in scientific usage: 68.3 percent {the lowest confidence worthy of quotm
90 percent, 95.4 percent, 99 percent, and 99.73 percent. Higher confid
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els are conventionally “ninety-nine point nine ... nine.” As for shape, ob-
iisly you want a region that is eompact and reasonably centered on your
asurement ag), since the whole purpose of a confidence limit is to inspire
ifidence in that measured value, In one dimension, the convention is to use
ne segment centered on the measured value; in higher dimensions, ellipses
llipsoids are most frequently used.

" You might suspect, correctly, that the numbers 68.3 percent, 95.4 per-
ent, and 99.73 percent, and the use of ellipsoids, have some connection with
normal distribution. That is true historically, but not always relevant nowa-
ys. In general, the probability distribution of the parameters will not be
‘mal, and the above numbers, used as levels of confidence, are purely mat-
< of convention.

. Figure 14.5.3 sketches a possible probability distribution for the case
= 2. Shown are three different confidence regions which might usefully be
en, all at the same confidence level. The two vertical lines enclose a band
rizontal inverval) which represents the 68 percent confidence interval for
he variable ay without regard to the value of az. Similarly the horizontal
es enclose a 68 percent confidence interval for as. The ellipse shows a 68
cent confidence interval for a; and ag jointly. Notice that to enclose the
ne probability as the two bands, the ellipse must necessarily extend outside
both of them (a point we will return to below).

lse of Constant Chi-Square Boundaries as Confidence Limits

When the method used to estimate the parameters a(y, is chi-square
nimization, as in the previous sections of this chapter, then there is a natural
oice for the shape of confidence intervals, whose use is almost universal. For
observed data set D(g), the value of x* is a minimum at ag). Call this
inimum value x2,. . If the vector a of parameter values is perturbed away
om a(p), then x? increases. The region within which x? increases by no
re than a set amount Ax? defines some M dimensional confidence region
round a(g). I Ax? is set to be a large number, this will be a big region; if it
imall, it will be small. Somewhere in between there will be choices of Ay?
ich cause the region to contain, variously, 68 percent, 90 percent, etc. of
bability distribution for a’s, as defined above. These regions are taken as
‘confidence regions for the parameters ag).
. Very frequently one is interested not in the full M-dimensional confidence
ion, but in individual confidence regions for some smaller number v of pa-
eters. For example, one might be interested in the confidence interval
tach parameter taken separately (the bands in Figure 14.5.3), in which
¢ v = 1. In that case, the natural confidence regions in the v-dimensional
space of the AM-dimensional parameter space are the projections of the
dimensional regions defined by fixed Ay? into the v-dimensional spaces of
erest. In Figure 14.5.4, for the case M = 2, we show regions corresponding
veral values of Ax?. The one-dimensiona) confidence interval in ay corre-
nding to the region bounded by Ax? = 1 lies between the lines A and A’
- Notiece that the projection of the higher-dimensional region on the lower-
lension space is used, not the intersection. The intersection would be the
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)
dinz — oy

68% conﬁdence_ PR 68% confidence region
interval on a, , o .-

. ..- on a, and a, jointly

68% confidence interval on a,

(3]
Quy — day

Figure 14.5.3. Confidence intervals in 1 and 2 dimensions. The same fraction of measure
points (here 68%) lies (i} between the two vertical lines, (ii) between the two horizon
lines, (iii} within the ellipse.

Ax* = 2.30

Figure 14.5.4. Confidence region ellipses corresponding to values of chi-square larger t
the fitted minimum. The solid curves, with Ax? = 1.00,2.71,6.63 project onto
dimensional intervals AA’, BB’, OC'. These intervals — not the ellipses themselv
contain 68.3%, 90%, and 99% of normally distributed data. The ellipse that contains 68:3
of normally distributed data is shown dasked, and has Ax2 = 2.30, For additional num
ical values, see accompanying table. :
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pand between Z and Z'. It is never used. It is shown in the figure only for
the purpose of making this cautionary point, that it should not be confused
ith the projection.

Probability Distribution of Parameters in the Normal Case

You may be wondering why we have, in this section up to now, made

o connection at all with the error estimates that come out of the x? fitting

rocedure, most notably the covariance matrix C;;. The reason is this: x?2

minimization is a useful means for estimating parameters even if the measure-

ent errors are not normally distributed. While normally distributed errors

e required if the x? parameter estimate is to be a maximum likelihood esti-

ator {§14.1), one is often willing to give up that property in return for the

s|ative convenience of the x2 procedure. Only in extreme cases, measurement

error distributions with very large “tails,” is x? minimization abandoned in

vor of more robust techniques, as will be discussed in §14.8.

However, the formal covariance matrix that comes out of a ¥? mini-

ization has meaning only if (or to the extent that) the measurement errors

ually are normally distributed. In the case of nonnormal errors, you are

allowed”

e to fit for parameters by mimimizing x?

e to use a contour of constant Ax? as the boundary of your confidence
region

e to use Monte Carlo simulation or detailed analytic calculation in de-
termining which contour Ax? is the correct one for your desired
confidence level

e to give the covariance matrix C;; as the “formal covariance matrix of
the fit on the assumption of normally distributed errors.”

u are not allowed

e tointerpret Cy; as the actual squared standard errors of the parameter
estimation

e to use formulas that we now give for the case of normal errors, which
establish quantitative relationships among Ax?, Cy;, and the
confidence level.

_Here are the key theorems that hold when (i) the measurement errors are

mally distributed, and either (ii) the model is linear in its parameters or

ii} the sample size is large enough that the uncertainties in the fitted param-

ers a do not extend outside a region in which the model could be replaced

a suitable linearized model. [Note that condition (iii) does not preclude

r use of a nonlinear routine like mqrfit to find the fitted parameters.]

- Theorem A. X2, is distributed as a chi-square distribution with N —M

grees of freedom, where IV is the number of data points and M is the number

fitted parameters. This is the basic theorem which Iets you evaluate the

dness-of-fit of the model, as discussed above in §14.1. We list it first to

ind you that unless the goodness-of-fit is credible, the whole estimation

DParameters is suspect.
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Theorem B, If afj) is drawn from the universe of simulated data s

with actual parameters a(g), then the probability distribution of ja = a(
a(g) is the multivariate normal distribution

P(éa) day ...day = const. X exp (—%éa- [a] '6a) day ... days

where [0] is the curvature matrix defined in equation (14.4.8).

Theorem C. If a‘(gj} is drawn from the universe of simulated data sef
with actual parameters a(g), then the quantity Ax® = x*(a¢)) — x*(a);
distributed as a chi-square distribution with M degrees of freedom. Her
x%’s are all evaluated using the fixed (actual) data set D). This theor
makes the connection between particular values of Ax? and the fraction
the probability distribution that they enclose as an M-dimensional regi
i.e., the confidence level of the M-dimensional confidence region.

Theorem D.  Suppose that a‘((’; 3 is drawn from the universe of simula
data sets (as above), that its first v components ay, ..., a, are held fixed, anc
that its remaining M — v components a,re var'led 50 as to minimize x?.
this minimum value x2. Then Ax2 = x2 - x2,,, is distributed as a chi-square
distribution with » degrees of freedom. If you consult Figure 14.5.4, you
see that this theorem comnects the projected Ax? region with a confide)
level. In the figure, a point that is held fixed in ag and allowed to vary in
minimizing x? will seek out the ellipse whose top or bottom edge is tang
to the line of constant ag, and is therefore the line that projects it onto th
smaller dimensional space. :

As a first example, let us consider the case ¥ = 1, where we want
find the confidence interval of a single parameter, say a;. Notice that:
chi-square distribution with v = 1 degree of freedom is the same dlstrlbut
as that of the square of a single normally distributed quantity. Thus /_\x
occurs 68.3 percent of the time (1-o for the normal distribution), Ax2
occurs 95.4 percent of the time {2-¢ for the normal distribution), Ax2
occurs 99.73 percent of the time (3-¢ for the normal distribution}, etc. In
manner you find the Ax?Z which corresponds to your desired confidence le
(Additional values are given in the accompanying table.)

Let §a be a change in the parameters whose first component is arbit
a1, but the rest of whose components are chosen to minimize the Ax?. Tl
Theorem D applies. The value of Ax? is given in general by

Ax®=6a [o]-6a (14

which follows from equation (14 4.8) applied at xZ,,, where gx = 0.
fa by hypothesis minimizes x? in all but its first component, the seco
through M*™ components of the normal equations (14.4.9) continue ¢
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AX? as a Funetion of Confidence Level and Degrees of Freedom

24
p 1 2 3 4 5 6

68.3% 1.00 2.30 3.53 4.72 5.89 7.04
0% 2.71 4.61 6.25 7.78 9.24 10.6
95.4% 400 617 802  9.70 11.3 12.8
£ 9% 6.63 9.21 11.3 13.3 15.1 16.8
199.73% 9.00 11.8 14.2 16.3 18.2 20.1
99.99% 151 184 211 235 257 278
‘herefore, the solution of (14.4.9) is

c [

0 0

ba=lo]t | . | =[C]-] . (14.5.2)
0 0

ere ¢ is one arbitrary constant that we get to adjust to make (14.5.1) give
e desired left-hand value. Plugging (14.5.2) into (14.5.1) and using the fact
at [C] and [e] are inverse matrices of one another, we get

c= 5&1/011 and sz = (6&1)2/011 (1453)

5(11 = i\/ AXE \/ 011 (1454)

. At last! A relation between the confidence interval +6ay and the formal
ndard error oy = +/C1;. Not unreasonably, we find that the 68 percent
fidence interval is 4oy, the 95 percent confidence interval is 201, etc.
These considerations hold not just for the individual parameters a;, but
is0 for any linear combination of them: If

M
Z cidi=c-a {14.5.5)
k=1

b

il

n the 68 percent confidence interval on b is

§b=+/c [C] ¢ (14.5.6)

- However, these simple, normal-sounding numerical relationships do not
old in the case v > 1. In particular, Ax? = 1 is not the boundary, nor
es it project onto the boundary, of a 68.3 percent confidence region when
> 1. If you want to calculate not confidence intervals in one parameter, but

e
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confidence ellipses in two parameters jointly, or ellipsoids in three, or higher
then you must follow the following prescription for implementing Theorems
C and D above:

e Let v be the number of fitted parameters whose joint confidence region
you wish to display, v <M. Call these parameters the “param
eters of interest.”

Let p be the confidence limit desired, e.g. p = 0.68 or p = 0.95.

Find A (i.e. Ax2) such that the probability of a chi-square variable
with v degrees of freedom being less than A is p. For some useful
values of p and v, A is given in the table. For other values, y:
can use the routine gammq and a simple root-finding routine {e
bisection) to find A such that gammq(r/2, A/2) =1—p.

Take the M x M covariance matrix [C] = [a] ! of the chi-square
Copy the intersection of the v rows and columns correspondi
to the parameters of interest into a ¥ X v matrix denoted [Cpy,,

Invert the matrix [Cproj]. (In the one-dimensional case this was just
taking the reciprocal of the element C';.)

The equation for the elliptical boundary of your desired confidence
region in the v-dimensional subspace of interest is

A= 8a' - [Cpros] ™" - 62’ (14.5

where §a’ is the v-dimensional vector of pararmeters of interes

If you are confused at this point, you may find it helpful to compare Figu
14.5.4 and the accompanying table, considering the case M = 2 with v =1
and » = 2. You should be able to verify the following statements: (i) The
horizontal band between €' and C' contains 99 percent of the probability
distribution, so is a confidence limit on ag alone at this level of confiden
(i) Ditto the band between B and B’ at the 90 percent confidence lev
(iii) The dashed ellipse, labeled by Ax? = 2.30, contains 68.3 percent of the
probability distribution, so is a confidence region for a; and a2 jointly, at t
level of confidence.

Confidence Limits from Singular Value Decomposition

When you have obtained your x? fit by singular value decompositi
(§14.3), the information about the fit’s formal errors comes packaged in
somewhat different, but generally more convenient, form. The columns of t
matrix V are an orthonormal set of M vectors which are the principal axes 0
the Ax? = constant ellipsoids. We denote the columns as V(1) ... Viar). T
lengths of those axes are inversely proportional to the corresponding singular
values wy ... war; see Figure 14.5.5. The boundaries of the ellipsoids are th
given by

Ax? =wi(Vy-6a) + + wl, (V) - 6a)? (14
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[27]

gure 14.5.5. Relation of the confidence region ellipse Ax? = 1 to quantities computed
py: singular value decomposition. The vectors V(;) are unit vectors along the principal
es of the confidence region. The semi-axes have lengths equal to the reciprocal of the

iigular values w;. If the axes are all scaled by some constant factor o, Ax? is scaled by
: 2

he factor o®.
which is the justification for writing equation (14.3.18) above. Keep in mind
at it is much easier to plot an ellipsoid given a list of its vector principal
es, than given its matrix quadratic form!

- The formuia for the covariance matrix O] in terms of the columns Vi) is

M
1
(1= =VuyeVgy (14.5.9)
=1 %
‘In components,
M 1 :
Cir = ; VitV (14.5.10)

FERENCES AND FURTHER READING:
Avni, Y. 1976, Astrophysical Journal, vol. 210, pp. 642—646.

Lampton, M., Margon, M., and Bowyer, S. 1976, Astrophysical Journal,
vol. 208, pp. 177-190.

Brownlee, K.A. 1965, Statistical Theory and Methodology, 2nd ed. (New
York: Wiley).

Martin, B.R. 1971, Statistics for Physicists (New York: Academic Press).
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14.6 Robust Estimation

The concept of robustness has been mentioned in passing several tim
already. In §13.2 we noted that the median was a more robust estimator
central value than the mean; in §13.8 it was mentioned that rank correl
tion is more robust than linear correlation. The concept of outlier points
exceptions to a Gaussian model for experimental error was discussed in §14.

The term “robust” was coined in statistics by G.E.P. Box in 1953. Vario
definitions of greater or lesser mathematical rigor are possible for the term
but in general, referring to a statistical estimator, it means “insensitive t
small departures from the idealized assumptions for which the estimator’
optimized.” The word “small” can have two different interpretations, bot
important: either fractionally small departures for all data points, or el
fractionally large departures for a small number of data points. It is th
laiter interpretation, leading to the notion of outlier points, that is general
the most stressful for statistical procedures.

Statisticians have developed various sorts of robust statistical estlmator
Many, if not most, can be grouped in one of three categories.

M-estimates follow from maximum-likelihood arguments very much
equations (14.1.5) and (14.1.7) followed from equation (14.1.3). M-estimat
are usually the most relevant class for model-fitting, that is, estimation
parameters. We therefore consider these estimates in some detail below.

L-estimates are “linear combinations of order statistics.” These are mo;
applicable to estimations of central value and central tendency, though the
can occasionally be appled to some problems in estimation of parameter
Two “typical” L-estimates will give you the general idea. They are (i) ¢
median, and (i) Tukey’s trimean, defined as the weighted average of the firs
second, and third quartile points in a distribution, with weights 1/4, 1/2
1/4 respectively. f

R-estimates are estimates based on rank tests. For example, the equ
ity or inequality of two distributions can be estimated by the Wilcozo
of computing the mean rank of one distribution in a combined sample
both distributions. The Kolmogorov-Smirnov statistic {equation 13.5.4)
the Spearman rank-order correlation coefficient (13.8.1) are R-estimate
essence, if not always by formal definition. '

Some other kinds of robust techniques, coming from the fields of optim
control and filtering rather than from the field of mathematical statistics,
mentioned at the end of this section. Some examples where robust statist
methods are desirable are shown in Figure 14.6.1.

Estimation of Parameters by Local M-estimates

Suppose we know that our measurement errors are not normally:
tributed. Then, in deriving a maximum-likelihood formula for the estima
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narrow

/ central peak

tail of
outliers

(a)

robust straight-ling fit

(b)

igure 14.6.1. Examples where robust statistical methods are desirable: (a) A one-dimen-
lonal distribution with a tail of outliers; statistical fluctuations in these outliers can prevent
curate determination of the position of the central peak. (b) A distribution in two di-
iensions fitted to a straight line; non-robust techniques such as least-squares fitting can
ave undesired sensitivity to outlying points.

parameters a in a model y(z;a), we would write instead of equation (14.1.3)

N
P = [ {exp [-p(vi, y{zs;a})] Ay} (14.6.1)

i=1

here the function p is the negative logarithm of the probability density.
‘aking the logarithm of (14.6.1) analogously with (14.1.4), we find that we
ant to minimize the expression

N
> olviry {zi;a}) (14.6.2)

=1

- Very often, it is the case that the function p depends not ndependently
I its two arguments, measured y; and predicted y(z;), but only on their
ifference, at least if scaled by some weight factors o; which we are able to
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assign to each point. In this case the M-estimate is said to be local, and
can replace (14.6.2) by the prescription

minimize over a Z p (y‘i (a;" 2) ) (14.6.3

where the function p(z) is a function of a single variable z = [y; — y(xi)]/o.
If we now define the derivative of p(z) to be a function 1(z),

w(z) = P dp(Z)

then the generalization of (14.1.7) to the case of a general M-estimate is

1 | day,

0= é 51,/; (y"' _Uf"_’(mf)) (By(m,;;a)) k=1,...,M (146

If you compare (14.6.3) to (14.1.3), and (14.6.5) to (14 1.7), you see
once that the specialization for normally distributed errors is

plz) = %zz ¥(z}) =2z  (normal) (14.

If the errors are distributed as a double or two-sided exponential, namely
) (14,

p(z) = |2| (2} =sgn(z)  (double exponential) {14.6.

Prob {y; — y(z:)} ~ exp (_ ¥ y(2:)

then, by contrast,

Comparing to equation (14.6.3), we see that in this case the maximum like
hood estimator is obtained by minimizing the mean absolute deviation, rath
than the mean square deviation. Here the tails of the distribution, altho
exponentially decreasing, are asymptotically much larger than any COIT
sponding Gaussian. _

A distribution with even more extensive — therefore sometimes eV
more realistic — tails is the Cauchy or Lorentzian distribution,

Prob {y; ~ y(x:)} ~ - (14.6.
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This implies

zZ

= 1—:;—;;; (Lorentzian)  (14.6.10)

p(2) = log (1 + %z”) P(2)

Notice that the 1 function occurs as a weighting function in the gener-
ized normal equations {14.6.5). For normally distributed errors, equation
'(14.6.6) says that the more deviant the points, the greater the weight. By con-
ast, when tails are somewhat more prominent, as in (14.6.7), then (14.6.8)
says that all deviant points get the same relative weight, with only the sign
formation used. Finally, when the tails are even larger, (14.6.10) says the ¢
creases with deviation, then starts decreasing, so that very deviant points —
e true outliers — are not counted at all in the estimation of the parameters.
This general idea, that the weight given individual points should first in-
ease with deviation, then deecrease, motivates some additional prescriptions
for 1 which do not especially correspond to standard, textbook probability
stributions. Two examples are

Andrew’s sine

$(2) = {Sin(g /o) I;I g (14.6.11)

the measurement errors happen to be normal after all, with standard de-
ations oy, then it can be shown that the optimal value for the constant ¢
¢ = 2.1

Tukey’s biweight

P(z) = { Al - 32/02)2 iil S (14.6.12)

here the optimal value of ¢ for normal errors is ¢ = 6.0.

Numerical Calculation of M-estimates

To fit a model by means of an M-estimate, you first decide which M-
timate you want, that is, which matching pair p, 3 you want to use. We
rather like (14.6.8) or (14.6.10).

You then have to make Hobson’s choice between two fairly difficult prob-
ms. Either find the solution of the nonlinear set of M equations {14.6.5), or
se minimize the single function in M variables {14.6.3).

Notice that the function (14.6.8) has a discontinuous 4, and a discontinu-
us derivative for p. Such discontinuities frequently wreak havoc on both gen-
al nonlinear equation solvers and general function minimizing routines. You
ight now think of rejecting (14.6.8) in favor of (14.6.10), which is smoother.
owever, you will find that the latter choice is also bad news for many general
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equation solving or minimization routines: small changes in the fitted param
eters can drive (z) off its peak into one or the other of its asymptotical
small regimes. Therefore, different terms in the equation spring into or o
of action (almost as bad as analytic discontinuities).

Don't despair. If your computer budget (or, for personal computer
patience) is up to it, this is an excellent application for the downhill simp__l
minimization algorithm exemplified in amoeba §10.4. That algorithm maki
no assumptions about continuity, it just oozes downhill. It will work for
virtually any sane choice of the function p. '

It is very much to your (financial) advantage to find good startin
ues, however. Often this is done by first fitting the model by the standard
(nonrobust) techniques, e.g. as described in §14.3 or §14.4. The fitted param
eters thus obtained are then used as starting values in amoeba, now using il
robust choice of p and minimizing the expression (14.6.3). '

Fitting a Line by Minimizing Absolute Deviation

Occasionally there is a special case that happens to be much easier the
is suggested by the general strategy outlined above. The case of equatio]
(14.6.7)-(14.6.8), when the model is a simple straight line

y(z;0,b) = a + bz (14.6.1

and where the weights o; are all equal, happens to be such a case. The proble
is precisely the robust version of the problem posed in equation {14.2.1) abow
namely fit a straight line through a set of data points. The merit func
to be minimized is

N
Z lyi — o — bz (14.6
i=1

rather than the x? given by equation (14.2.2).

The key simplification is based on the following fact: The median cas !
a set of numbers ¢; is also that value which minimizes the sum of the absoly
deviations

Z lei — cal

(Proof: Differentiate the above expression with respect to cps and s€
to zero.) :
It follows that, for fixed b, the value of & which minimizes (14.6.14)_.-'

a = median {y; — ba;} (14.6
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Equation (14.6.5) for the parameter b is

N
0= Z z; sgnfy; — o — bx;) (14.6.16)

i=1

f we replace a in this equation by the implied function a(b) of (14.6.15),
then we are left with an equation in a single variable which can be solved
by bracketing and bisection, as described in §9.1. (In fact, it is dangerous

use any fancier method of root-finding, because of the discontinuities in
quation 14.6.16.)

Here is a routine which does all this. It calls sort (§8.2) to find the
median by the sorting method, cf. §13.2. The bracketing and bisection are
uilt in to the following routine, as is the x? solution which generates the
tial guesges for 4 and b. Notice that the evaluation of the right-hand side
' (14.6.16) occurs in the function rofunc, with communication via global
{top-level) variables.

include <math.h>

nt ndatat=0; /+ defining declaration #/
loat *Xt=0,%*yt=0,aa=0.0,abdevt=0.0; /* defining declaration */

d medfit{x,y,ndata,a,b,abdev)

'1oat *x,*y,*a,*b,*abdev;

nt ndata;

its ¥ = a + bx by the criterion of least absolute deviations. The arrays x[1..ndata] and
[1..ndata] are the input experimental points. The fitted parameters a and b are output,
ng with abdev which is the mean absolute deviation (in ¥) of the experimental points from
he fitted line. This routine uses the routine rofunc, with communication via global variabies.

int j§;

float bb,bl,b2,del,f,f1,£2,sigb, temp;

fleat sx~0.0,8y=0.0,8xy=0.0, sxx=0.0, chisq=0.0;
float rofunc():

ndatat=ndata;

xt=x;

yt=y;

for (j=1;j<=ndata;j++) { As a first guess for a and b, we Will find the least-squares
sx += x{jl; fitting line.
sy += y{jl;

exy += x[jl*y{jl:

axx += x[j1*x{jl;
} ;
del=ndata*sxx-sx*esx;
aa={sxx*ey-sx+sxy)/del; Least-squares sotutions.
bb={(ndata*sxy-ax*sy)/del;
for (j=1;j<=ndata;j++)

chisq += (temp=y{j]-(aa+bb*x[j1),temp*tenp);
sigh=sqrt{chisg/del}; The standard deviation will give some idea of how big
bi=bb; an (teratlon step to take.
fi=rofunc{bi);
b2=bb+{(f1 > 0.0) ¥ faba(3.0%sigh) : -faba(3.0xsighb)); Guess bracket as 3-0
f2=rofunc(b2); away, in the downhill direction known from f£1.
while (f1#£2 > 0.0) { Bracketing.
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bb=2,0%b2-bl;
bi=b2;

f1=£2;

b2=bb;
£2=rofunc(b2);

}
8igh=0.01i*sigb; Refine untlf error a negligible number of standard devi-
while (faba(b2-bi) > sigb) { ations.
bb=0.6*(b1+b2)}; Bisection,
if {bb == bl || bb == b2) break;
f=rofunc(bb) ;
if (f+f1 >= 0.0) {
fi=f;
bi=bb;
} else {
2=f;
b2=bb;
}
}
*a=aa;
#b=bb;
*abdev=abdevt/ndata;

#include <math.h>

extern int ndatat; /% defined in MEDFIT */
extern float *xt,*yt,aa,abdevt;

float rofunc(b)
float b;
Evaluates the right-hand side of equation (14.6.16) for a glven value of b. Communication
with the program medfit is through global variables, :
{
int j,ni,nmh,nmi;
float *arr,d,sum=0.0,*vector();
void sort(),free_vector();

arr=vector{i,ndatat);
ni=ndatat+1;
nml=ni/2;
nnh=ni-nml;
for (j=1;j<=ndatat;j++) arr{jl=yt{jI-b*xt[j];
sort {ndatat,arr);
aa=0.6*(arr [nmll+arr[nmhl);
abdavt=0.0;
for (j=1;j<=ndatat;j++} {
A=yt [j1-(bext[j]l+aa);
abdevt += faba{d);
sum +=d > 0.0 ? xtfj] : -xt[jI;:
}
free_vector(arr,1,ndatat);
return sum;
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Other Robust Techniques

Sometimes you may have e priori knowledge about the probable values
and probable uncertainties of some parameters that you are trying to estimate
rom & data set. In such cases you may want to perform a fit that takes
his advance information preperly into account, neither completely freezing a
arameter at a predetermined value (as in 1fit §14.3) nor completely leaving
t to be determined by the data set. The formalism for doing this is called
‘use of a priorl covariances.”

A related problem occurs in signal processing and control theory, where it
s sometimes desired to “track” (i.e. maintain an estimate of) a time-varying
ignal in the presence of noise. If the signal is known to be characterized
y some number of parameters that vary only slowly, then the formalism
f Kalman filtering tells how the incoming, raw measurements of the signal
should be processed to produce best parameter estimates as a function of time.
or example, if the signal is a frequency-modulated sine wave, then the slowly
arying parameter might be the instantaneous frequency. The Kaiman filter
or this case is called a phase-locked loop and is implemented in the circuitry
f good radio receivers.

Consult Bryson and Ho, or Jazwinski for details on these and other
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Bryson, A. E., and Ho, Y.C. 1969, Applied Optimal Control (Waltham,
Mass.: Ginn).

Jazwinski, A. H. 1970, Stochastic Procaesses and Filtering Theory {New
York: Academic Press).

oy

T

=

=

L



	14pt1.pdf
	14pt2

