
Numerical Recipes in C
The Art of Scientific Computing

William H. Press
Harvard-Smithsonian Center for Astrophysics

Brian P. Flannery
EXXON Research and Engineering Company

Saul A. Teukolsky
Department of Physics, Cornell University

William T. Vetterling
Polaroid Corporation

TIl<' righl t>/Ihe
Universil), of C"",brldge

10 prim and s.,J1
all m"m,<'r 'if ""oks

Ims gra",~d by
H,''''y VJ!I i" 1514.

TIl<' VJljrersily has primed
"lid pI/bU.""" ""lIIinlioll'/Y

since 1584.

CAMBRIDGE UNIVERSITY PRESS
Cambridge

New York Port Chester
Melbourne Sydney

ter 14.

o Introduction

Given a set of obsetvations, one often wants to condense and summarize
data by fitting it to a "model" that depends on adjustable parameters.

lm"tiTIaes the model is simply a convenient class of fuoctions, such as poly­
or Gaussians, and the fit supplies the appropriate coefficients. Other

the model's parameters come from some underlying theory that the
supposed to satisfy; examples are coefficients of rate equations in a
network of chemical reactions, or orbital elements of a binary star.

lodleling can also be used as a kind of constrained interpolation, where you
to extend a few data points into a continuous fuoction, but with some

nd"rlving idea of what that function should look like.
The basic approach in all cases is usually the same: You choose or de­
a figure-oJ-merit Junction ("merit function," for short) that measures the

lre,ement between the data and the model with a particular choice of pa­
ml"teI's. The merit function is conventionally arranged so that small values

close agreement. The parameters of the model are then adjusted to
a minimum in the merit fuoction, yielding best-fit parameters. The

iju:stnlerlt process is thus a problem in minimization in -many dimensions.
optimization was the subject of Chapter 10; however, there exist spe­

more efficient, methods that are specific to modeling, and we will discuss
in this chapter.

There are important issues that go beyond the mere finding of best-fit
!.rameteI·S .. Data are generally not exact. They are subject to measurement

(called noise in the context of signal-processing). Thus, typical data
exactly fit the model that is being used, even when that model is correct.

need the means to assess whether or not the model is appropriate, that
we need to test the goodness-oJ-fit against some useful statistical standard.

We usually also need to know the accuracy with which parameters are
t'termim,d by the data set. In other words, we need to know the likely errors

the best-fit parameters.
Finally, it is not uocommon in fitting data to discover that the merit
. is not unimodal, with a single minimum. In some cases, we may be

~erested in global, rather than local questions. Not, "how good is this fit?",
rather, "how sure am I that there is not a very much better fit in some

517

!'!III!~~:, I, :

~ij'lliill 1
...''''' ... -~

1':1
~.: ,!~:

""'V,'j I: i
1 ,~'l!l\ , rill,
~~,;u~
t,,*,~lt

1'1"" :' I

ij::11';fl\

~ ?tl
~ !r'
iji"1

11 rt!t
1(. 'i'~
~ ,f},~

;! til.;
'1,·,Ji

U:'~W

II' ~w

14. of Data

corner of parameter space?" As we have seen in Chapter 10, especially §1O.
this kind of problem is generally quite difficult to solve.

The important message we want to deliver is that fitting of parameters
is not the end-all of parameter estimation. To be genuinely useful, a
procedure should provide (i) parameters, (ii) error estimates on the param-'
eters, and (iii) a statistical measure of goodness-of-fit. When the third
suggests that the model is an unlikely match to the data, then items (i)
(ii) are probably worthless. Unfortunately, many practitioners of parameter;
estimation never proceed beyond item (i)! They deem a fit acceptable if
graph of data and model "looks good." This approach is known as chi-bu-eue,
Luckily, its practitioners get what they deserve.

REFERENCES AND FURTHER READING:

Bevington, Philip R. 1969, Data Reduction and Error Analysis for
Physical Sciences (New York: McGraw-Hili).

Brownlee, K.A. 1965, Statistical Theory and Methodology, 2nd ed.
York: Wiley).

Martin, B.R. 1971, StatistIcs for Physicists (New York: Academic
von Mises, Richard. 1964, Mathematical Theory of probability and

tics (New York: Academic Press), Chapter X.
Korn, G.A., and Korn, T.M. 1968, Mathematical Handbook for Sclentisi!

and Engineers, 2nd ed, (New York: MCGraw-HIli), Chapters

14.1 Least Squares as a Maximum Likelihood
Estimator

Suppose that we are fitting N data points (Xi, Yi) i = 1, ... , N, to a
which has M adjustable parameters aj, j = 1, ... , M. The model
a functional relationship between the measured independent and dependel1
variables,

Y(X) = y(x;al ... aM)

where the dependence on the parameters is indicated explicitly on the
hand side.

What, exactly, do we want to minimize to get fitted values for the
The first thing that comes to mind is the familiar least-squares fit,

N

minimize overal ... aM: L [Yi - Y(Xi; al ... aM)]2
i=l

But where does this come from? What general principles is it based on?
answer to these questions takes us into the subject of maximum like!
estimators.

14.1 Least Squares as a Maximum Likelihood Estimator

Given a particular data set of Xi'S and Yi '8, we have the intuitive feeling
that some parameter sets a, ... aM are very unlikely - those for which the
model function y(x) looks nothing like the data - while others may be very
likely - those whicb closely resemble the data. How can we quantify this
intuitive feeling? How can we select fitted parameters that are "most likely" to
be correct? It is not meaningfnl to ask the question, "What is the probability

a particular set of fitted parameters al ... aM is correct?') The reason is
there is no statistical universe of models from which the parameters are

drawn. There is just one model, the correct one, and a statistical universe of
data sets that are drawn from it!

That being the case, we can, however, turn the question around, and ask,
"Given a particular set of parameters, what is the probability that this data set
could have occurred?" If the Yi'S take on continuous values, the probability
will always be zero unless we add the phrase, " ... plus or minus some fixed

on each data point." So let's always take this phrase as understood. If
probability of obtaining the data set is infinitesimally small, then we
conclude that the parameters under consideration are "unlikely" to be

Conversely, our intuition tells us that the data set shonld not be too
'inlpr'obablle for the correct choice of parameters.

In other words, we identify the probability of the data given the parame­
(which is a mathematically computable nUll1ber), as the likelihood of the

;p"ram"telrs given the data. This identification is entirely based on intuition.
has no formal mathematical basis in and of itself; as we already remarked,

.st"ti"tic:s is not a brancb of mathematics!
Once we make this intuitive identification, however, it is only a small

step to decide to fit for the parameters a, ... aM precisely by finding
values that maximize the likelihood defined in the above way. This form

parameter estimation is maximum likelihood estimation.
We are now ready to make the connection to (14.1.2). Suppose that each
point Yi has a measurement error that is independently random and

dj"tributed as a normal (Gaussian) distribution around the "true" model y(x).
suppose that the standard deviations u of these normal distributions are

same for all points. Then the probability of the data set is the product
the probabilities of each point,

(14.1.3)

that there is a factor !1y in each term in the product. Maximizing
,- -'_"'} is equivalent to maximizing its logarithm, or minimizing the negative

its logarithm, namely,

(14.1.4)

:~~1Ii
'!Imllllll[
ll~III'::i
11ll~!ill!li!

! "~I,ji
1~e~~Jlllj!

;1:

"~ 1

")\1

.'
"'~i

"

"l;,li
I'

',W

::iti
"III

. "11

~~:

::\1

<
,",III

"t;:

520 Chapter 14. Modeling of Data

Since N, a and boy are all constants, minimizing this equation is equivalent
to minimizing (14.1.2).

What we see is that least-squares fitting i8 a maximum likelihood estima­
tion of the fitted parameters if the measurement errors are independent and
normally distributed with constant standard deviation. Notice that we made
no assumption about the linearity or nonlinearity of the model y(X; a, ...) in
its parameters a1 ... aM. Just below, we will relax our assumption of constant
standard deviations and obtain the very similar formulas for what is called
"chi-square fitting" or "weighted least-squares fitting." First, however, let us
discuss further our very stringent assumption of a normal distribution.

For a hundred years or so, mathematical statisticians have been in love
with the fact that the probability distribution of the sum of a very large
number of very small random deviations always converges to a normal dis­
tribution. (For precise statements of this central limit theorem, consnlt von
Mises or other standard works on mathematical statistics.) This infatuation
tended to. focus interest away from the fact that, for real data, the normal
distribution is often rather poorly realized, if it is realized at all. We are often
taught, rather casually, that, on average, measurements will fall within ±a
of the true value 68 percent of the time, within ±2a 95 percent of the time,
and within ±3a 99.7 percent of the time. Extending this, one would expect a
measurement to be off by ±20a only one time out of 2 x 1088 • We all know
that "glitches" are much more likely than that!

In some instances, the deviations from a normal distribution are easy to
understand and quantify. For example, in measurements obtained by counting
events, the measurement errors are usually distributed as a Poisson distribu­
tion, whose cumulative probability function was already discussed in §6.2.
When the number of counts going into one data point is large, the Poisson
distribution converges toward a Gaussian. However, the convergence is not
uniform when measured in fractional accuracy. The more standard deviations
out on the tail of the distribution, the larger the number of counts must be
before a value close to the Gaussian is realized. The sign ofthe effect is always
the same: the Gaussian predicts that "tail" events are much less likely than
they actually (by POisson) are. This causes such events, when they occur, to
skew a least-squares fit much more than they ought.

Other times, the deviations from a normal distribution are' not so
to understand in detail. Experimental points are occasionally just way
Perhaps the power flickered during a point's measurement, or Someone
the apparatus, or SOmeone wrote down a wrong number. Points like
are called outliers. They can easily tum a least-squares fit on otherwise
adequate data into nonsense. Their probability of occurrence in
sumed Gaussian model is so small that the maximum likelihood estima-c

tor is willing to distort the whole curve to try to bring them, mistakenly,
into line.

The subject of robust statistics deals with cases where the normal
Gaussian model is a bad approximation, or cases where outliers are importan~,;,
We will discuss robust methods briefly in §14.6. All the sections between
one and that one assume, one way or the other, a Gaussian model for
measurement errors in the data. It it quite important that you keep

14.1 Least as a Maximum Likelihood Estimator

Ilmita.tioms of that model in mind, even as you use the very useful methods
follow from assmning it.

Finally, note that our discussion of measurement errors has been limited
statistical errors, the kind that will average away if we only take enough

Measurements are also susceptible to systematic errors that will not go
with any amount of averaging. For example, the calibration of a metal
stick might depend on its temperature. If we take all our measurements

the same wrong temperature, then no amouilt of averaging or numerical
Pfoce'LsinLg will correct for this unrecognized systematic error.

Chi-Square Fitting

We considered the chi-square statistic once before, in §13.5. Here it
in a slightly different context.

If each data point (Xi, y;) has its own standard deviation O"i, then equa­
(14.1.3) is modified only by putting a subscript i on the symbol 0". That

:ublscript also propagates docilely into (14.1.4), so that the maximum likeli­
estimate of the model parameters is obtained by minimizing the quantity

(14.1.5)

the "chi-square.))
To whatever extent the measurement errors actually are normally dis­

"01He", the quantity X2 is correspondingly a smn of N squares of normally
Istl:lDlote,U quantities, each normalized to unit variance. Once we have ad­

the 0, ... OM to minimize the value of X2, the terms in the sum are
all statistically independent. However it turns out that the probability

stributicLll for different values of X2 at its rninimmn can nevertheless be de­
analytically, and is the chi-square distribution for N - M degrees of

We learned how to compute this probability function using the in­
gamma function gammq in §6.2. In particular, equation (6.2.18) gives

probability Q that the chi-square should exceed a particular value X2 by
where v = N - M is the number of degrees of freedom. The quantity

or its complement P == 1 - Q is frequently tabulated in appendices to
,atisti"s books, but we generally find it easier to use gammq and compute our

values: q=gammq(O.5*v,O.5*x2 l.
This computed probability gives a quantitative measure for the goodness­
of the model. If Q is a very small probability for some particular data

then the apparent discrepancies are unlikely to be chance fluctuations.
more probably either (i) the model is wrong - can be statistically

or (il) someone has lied to you about the size of the measurement
O"i - they are really larger than stated.

It is an important point that the chi-square probability Q does not di­
measure the credibility of the assmnption that the measurement errors

11'"

I' ,'!~m~

i:· ~
, :(11)1,1 .,

,,'"'''11 I •
j ~~:;mt'.l
r'I,~,I;·f,1

I ..
' ~I!;,~I
: ,I' ~

1:':1r,n~
f~~'lf I .fj'F-ll'

I' tr~1
•

H'''ll
I;"!'tl

(' <f<~~1

., !f,l.:1

14. Modeling of Data

are normally distributed. It assumes they are. In most, but not all, cases,
however, the effect of nonnormal errors is to create an abundance of outlier
points. These decrease the probability Q, so that we can add another possi­
ble, though less definitive, conclusion to the above list: (iii) the measurement
errors may not be normally distributed.

Possibility (iii) is fairly common, and also fairly benign. It is for
reason that reasonable experimenters are often rather tolerant of low
bilities Q. It is not uncommon to deem acceptable on equal terms any models
with, say, Q > 0.001. This is not as sloppy as it sounds: truly wrong models
will often be rejected with vastly smaller values of Q, 10-18 , say. However,
if day-in and day-out you find yourself accepting models with Q ~ 10-3 ,

really should track down the cause.
If you happen to know the actual distribution law of your measurement

errors, then you might wish to Monte Carlo simulate some data sets
from a particular model, cf. §7.2-§7.3. You can then subject these synthetic
data sets to your actual fitting procedure, so as to determine both the
bility distribution of the X2 statistic, and also the accuracy with which
model parameters are reproduced by the fit. We discuss this further in
The technique is very general, but it can also be very expensive.

At the opposite extreme, it sometimes happens that the probability Q
too large, too near to 1, literally too good to be true! Nonnormal measurement
errors cannot in general produce this disease, since the normal distribution;;
is about as "compact" as a distribution can be. Almost always, the .
of too good a chi-square fit is that the experimenter, in a "fit" of conser'
vativism, has overe8timated his or her measurement errors. Very rarely, 1

good a chi-square signals actual fraud, data that has been "fudged" to
the model.

A rule of thmnb is that a "typical" value of X2 for a "moderately"
fit is X2 '" v. More precise is the statement that, asymptotically for large
the statistic X2 becomes normally distributed with a mean v and a standard
deviation V2i/.

In some cases the uncertainties associated with a set of measurements'
are not known in advance, and considerations related to X2 fitting are
to derive a value for u. If we assume that all measurements have the
standard deviation, Ui = u, and that the model does fit well, then we
proceed by first assigning an arbitrary constant U to all points, next
for the model parameters by minimizing X2, and finally recomputing

N

u2 = l)Yi - Y(Xi)]2 IN
i=l

Obviously, this approach prohibits an independent assessment of goodness,
of-fit, a fact occasionally missed by its adherents. When, however, the
surement error is not known, this approach at least allows 80me kind of
bar to be assigned to the points.

[14.2 Fitting Data to a Straight Line 523

If we take the derivative of equation (14.1.5) with respect to the param­
eters ak> we obtain equations which must hold at the chi-square minimum,

N
0= L(Yi-Y(Xi)) (OY(Xi; ... ak "'))

. (jJ 8ak
%=1 •

k=1, ... ,M (14.1.7)

Equation (14.1.7) is, in general, a set of M nonlinear equations for the M
unknown ak. Various of the procedures described subsequently in this chapter
derive from (14.1.7) and its specializations.

REFERENCES AND FURTHER READING:

Bevington, Philip R. 1969, Data Reduction and Error Analysis for the
Physical Sciences (New York: McGraw-Hili), Chapters 1-4.

von Mises, Richard. 1964, Mathematical Theory of Probability and Statis­
tics (New York: Academic Press), §VI.c.

14.2 Fitting Data to a Straight Line

A concrete example will make the considerations of the previous section
more meaningful. We consider the problem of fitting a set of N data points
(Xi, Vi) to a straight-line model

y(X) = y(x; a, b) = a + bx (14.2.1)

problem is often called linear regression, a terminology that originated,
ago, in the social sciences. We assume that the uncertainty (Ii associated
each measurement Yi is known, and that the xi's (values of the dependent

are known exactly.
To measure how well the model agrees with the data, we use the chi­

,.squal-e merit function (14.1.5), which in this case is

x2(a,b) = t (Yi -a~bXi)2
i=l u%

(14.2.2)

the measurement errors are normally distributed, then this merit function
give maximum likelihood parameter estimations of a and b; if the errors
not normally distributed, then the estimations are not maximum likeli­

but may still be useful in a practical sense. In §14.6, we will treat the
where outlier points are so numerous as to render the X2 merit func­
useless.

mill

''''''11

j!;,i:::i
, ,
1',:" 1

,

&:I;ittl~o\I
rllliHol'\
1(H. 1lttt.t1
{:!"d:
~:fljt.l:tf

'I,~l~ Wi i{ ~~¥!

11,'lr~
'\
1:"""' ~I: ' I t(1

,W~

,
I

",F,I!

'." 'I)~t;·
1111

"!1:llktil'

524 Chapter 14. Modeling of Data

Equation (14.2.2) is minimized to determine a and b. At its minimum,
derivatives of X2 (a, b) with respect to a, b vanish.

o 2 N o = L = -2 '" Yi - a - bXi
oa ~ iT2

'1.=1 t

o 2 N
0= L = -2 '" Xi(Yi - a - bXi)

ob ~ iT2
,=1 t

These conditions can be rewritten in a convenient form if we define the fol­
lowing sums,

N N N 1
S== L iT2

i=l t

Sx=I:X;
i=l (Ji

Sy==L
Y
;

i=l (}'i

N x~
Sxx == ~ O"~

i=l t

N
S = ~ XiYi
xy~~--

i=l a;

With these definitions (14.2.3) becomes

as+bSx=Sy

aSx + bSxx = SXy

The solution of these two equations in two unknowns is calculated as

Ll. == SSxx - (Sx)2

SxxSy - SxSxy
a = --='---"--.-"-~

Ll.
b = SSxy - SxSy

Ll.

Equation (14.2.6) gives the solution for the best-fit model parameters a and
We are not done, however. We must estimate the probable uncertai

in the estimates of a and b, since obviously the measurement errors in the
must introduce some uncertainty in the determination of those parametersi
If the data are independent, then each contributes its own bit of uncertain~
to the parameters. Consideration of propagation of errors shows that
variance iTJ in the value of any function will be

N

iTJ = LiT; (Of)2
i=l 8Yi

14.2 Fitting Data to a Straight Line 525

~'For the straight line, the derivatives of a and b with respect to Yi can be
";directly evaluated from the solution:
0(

aa Sxx - SxXi

aYi ,,2 Ll. ,
ab SXi - Sx

(14.2.8)

aYi ,,2 Ll. ,

1]; Summing over the points as in (14.2.7), we get

i\

:~:~
(14.2.9)

::::

~,which are the variances in the estimates of a and b, respectively. We will see
~;in §14.5 that an additional number is also needed to characterize properly
·''''the probable uncertainty of the parameter estimation. That number is the
~i covariance of a and b, and (as we will see below) is given by
"-'x

Cov(a, b) = -Sx/ Ll. (14.2.10)

~l:' The coefficient of correlation between the uncertainty in a and the un­
;~'certainty in b, which is a number between -1 and 1, follows from (14.2.10)
~;(compare equation 13.7.1),

-Sx
rab = ';SSxx (14.2.11)

~i.A positive value of rab indicates that the errors in a and b are likely to have
'~~,:::the same sign, while a negative value indicates the errors are anticorrelated,
i'likely to have opposite signs .
• ;; We are still not done. We must estimate the goodness-of-fit of the data to
~:the model. Absent this estimate, we have not the slightest indication that the
*~parameters a and b in the model have any meaning at all! The probability
~;Q that a value of chi-square as poor as the value (14.2.2) should occur by
~Lchance is

(
N-2 X2)

Q=gammq -2-' 2" (14.2.12)

,,\,.,

i«Here gammq is our routine for the incomplete gamma function Q(a,x), §6.2. If
~9 is larger than, say, 0.1, then the goodness-of-fit is believable. If it is larger
'ethan, say, 0.001, then the fit may be acceptable if the errors are nonnormal or

};

• t ~

• ..
.• -[1

" '.'.:'

i'
i'\~j: 1

.,1

i·
i';;;
P,:
;5"1'

,:11 1

"
;'-'11 1

: _h I

I!)

526 Chapter 14. Modeling of Data

have been moderately underestimated. If Q is less than 0.001 then the model
and/or estimation procedure can rightly be called into question. In this latter
case, turn to §14.6 to proceed further.

If you do not know the individual measurement errors of the points Ui,

and are proceeding (dangerously) to use equation (14.1.6) for estimating these
errors, then here is the procedure for estimating the probable uncertainties of
the parameters a and b: Set Ui = 1 in all equations through (14.2.6), and mul­
tiply Ua and Ub, as obtained from equation (14.2.9), by the additional factor
VX2/(N - 2), where X2 is computed by (14.2.2) using the fitted parameters
a and b. As discussed above, this procedure is equivalent to assuming a good
fit, so you get no independent goodness-of-fit probability Q.

In §13.7 we promised a relation between the linear correlation coefficient
r (equation 13.7.1) and a goodness-of-fit measure, X2 (equation 14.2.2). For
unweighted data (all Ui = 1), that relation is

X2 = (1 - r2)NVar (Yl ... YN) (14.2.13)

where
N

NVar (Yl ... YN) = 2)Yi - y)2 (14.2.14)
i=1

For data with varying weights Ui, the above equations remain valid if the sums
in equation (13.7.1) are weighted by l/ur.

The following function, fit, carries out exactly the operations that we
have discussed. When the weights U are known in advance, the calculations
exactly correspond to the formulas above. However, when weights U are un­
available, the routine assumes equal values of (J' for each point and assumes
a good fit, as discussed in §14.1.

The formulas (14.2.6) are susceptible to roundoff error. Accordingly, we
rewrite them as follows: Define

ti = :i (Xi - ;) , i=1,2, ... ,N

and
N

Stt = Ltt
i=l

Then, as you can verify by direct substitution,

1 N
b= -2: tiYi

Stt. --;;:-
~=1 't

a = Sy - Sx b

S

(14.2.15)

(14.2.16)

(14.2.17)

(14. iuoJ.;

<math.h>

float sqrarg;

2 1 (S;)
ffa = S 1 + SStt

1

Stt

Cov(a,b) = - Sit

Cov(a, b)
rab =

SQR(a) (sqrarg=(a),sqrarg*sqrarg)

fit(x,y,ndata,sig,mwt,a,b,siga,sigb,chi2.q)
xC] ,y[].sig[].*a.*b,*siga.*sigb.*chi2.*q;

ndata.mwt;

(14.2.19)

(14.2.20)

(14.2.21)

(14.2.22)

a set of points x[i. .ndata], y[1 .. ndata] with standard deviations sig[1. .ndatal,
them to a straight line y=a+bx by minimizing x2 . Returned are a,b and their respective

on,b.ble uncertainties aiga and sigb, the Chi-square chi2, and the goodness-of-fit probability
(that the fit would have x 2 this large or larger). If mwt=O on input, then the standard

de',I"elor15 are assumed to be unavailable: q is returned as 1.0 and the normalization of chi2
to unit standard deviation on all points.

int i;
float wt,t.sxoss.8x=O.O,sy=0.O,at2=0.O,aa,aigdat;
float gammq () ;

*b=O.O;
if (mwt) {

aa==O.O;
for (i=l;i<=ndata;i++) {

wt=1.0/SQR(sig[i]);
aa += wt;

}

ax += x [i] *wt;
ay += y[i]*wt;

} else {

}

for (i=l;i<=ndata;i++) {
sx += x[i];
sy += y[i];

}

ss=ndata;

sxoas=sx/sa;
if (mwt) {

for (i=l;i<=ndata;i++) {
t=(x [1] -sxoas)fsig[i] ;
at2 += t*t;
*b += t*y[i]/sig[i];.

}

} else {

}

for (i=l;i<=ndata;i++) {
t=x[1]-sxoss;
st2 += t*t;
*b += hy[1];

}

*b /= st2;

Accumulate sums.

... with weights

... or without weights.

Solve for A, B, Ua and Ub'

; :It
11f[! ,

. :Ie
~i I

,,:·I!.lfi ' ,
{\·gt,
. ,,~ if '

•
'.ttl!

;:.;:~
,t'rt'

"'~'

:"!>ij'

,';S;'

.,'\1.

:·'r

}

528 Chapter 14. Modeling of Data

a=(sy-sx(*b»/ss;
*siga=sqrt«1.0+sx*sx/(ss*st2»/ss);
*sigb=sqrt(1.0/st2);
*ch12=O.D; Calculate x2.
if (mwt == 0) {

for (i=l;i<=ndata;i++)
*chi2 += SQR(y[i]-(*a)-(*b)*x[i]);

*Q=1.0;

sigdat=sqrt «*chi2) /(ndata-2» ; For unwelghted data evaluate typical sig us-
*siga *= sigdat; Ing chi2, and adjust the standard devia-
*sigb *= sigdat; tlons.

} else {
for (i=l;i<=ndata;i++)

*chi2 += SQR«y[i]-(*a)-(*b)*X[l])/sig[i]);
q=gammq(O. 5 (ndata-2) ,0. 6*(*chi2» ; §6.2

}

REFERENCES AND FURTHER READING:

Bevington, Philip R. 1969, Data Reduction and Error Analysis for the
Physical SCiences (New York: McGraw-Hili), Chapter 6 .

14.3 General Linear Least Squares

An immediate generalization of the previous section is to fit a set of data
points (Xi, Yi) to a model which is not just a linear combination of 1 and X
(namely a+bx), but rather a linear combination of any M specified functions
of x. For example, the functions could be 1, x, X2, •.. , x M - 1 , in which case
their general linear combination,

y(x) = a, + a2X + a3x2 + ... + aMXM-' (14.3.1)

is a polynomial of degree M -1. Or, the functions could be sines and cosines,
in which case their general linear combination can be a harmonic series.

The general form of this kind of model is

M

y(x) = L akXk(x) (14.3.2)
k=l

where X,(x), ... ,XM(x) are arbitrary fixed functions of x, called the basis
functions.

Note that the functions Xk(X) can be wildly nonlinear functions of x. In
this discussion ~'linear" only refers to the model's dependence on its param­
eters ak.

14.3 General Linear Least Squares 529

For these linear models we generalize the discussion of the previous sec­
tion by defining a merit function

(14.3.3)

As before Ui is the measurement error (standard deviation) of the ith data
point, presumed to be known. If the measurement errors are not known, they
mayall, as before, be set to the constant value U = 1.

Once again, we will pick as best parameters those that minimize X2 •

. 'f'helce are several different techniques available for finding this minimum. Two
are particUlarly useful, and we will discuss both in this section. To introduce
them and elucidate their relationship, we need some notation.

Let A be a matrix whose N X M components are constructed from the M
basis functions evaluated at the N abscissas Xi, and from the N measurement
errors ai, by the prescription

(14.3.4)

matrix A is called the design matrix of the fitting problem. Notice that
general A has more rows than columns, N 2M, since there must be more

points than model parameters to be solved for. (You can fit a straight
to two points, but not a very meaningful quintic!) The design matrix is

schematically in Figure 14.3.1.
Also define a vector b of length N by

b . _ Yi ,-
Ui

(14.3.5)

denote the M vector whose components are the parameters to be fitted,
... ,aM, bya.

Solution by Use of the Normal Equations

The minimum of (14.3.3) occurs where the derivative of X2 with respect
all M parameters ak vanishes. Specializing equation (14.1.7) to the case of

model (14.3.2), this condition yields the M equations

N 1 r M 1 o = ~ ut Yi - ~ ajXj(Xi) Xk(Xi) k = 1, ... ,M (14.3.6)

":'r~I' .j-,I,

~!IU!

" " :~~j
,,:Il'-l,(j

:j1i

,:IJ~;
''!f,,~'

;,1
,till

::tUI
i·,!'il

'''~i
,j'l'll

'~IU

.1,;11.1

; , !-~-!,;

530 Chapter 14. Modeling of Data

basis fUllctions

X,() X,() I x. I x.~.) Xix,)
cr.

x, I X,(x,) Xix,)

~ . IT, cr,

8.
~

XN X,(X/J) X,(XN)

UN (IN

X",()

Xu(x,)

cr.

X",(x,)

cr,

XM(X/J)

""

Figure 14.3.1. Design matI'be for the least-squares fit of a linear combination of M basis
functions to N data points. The matrix elements involve the basis functions evaluated at
the values of the independent variable at which measurements are made, and the standard
deviations of the measured dependent variable. The measured values of the dependent
variable do not enter the design matrix.

Interchanging the order of summations, we can write (14.3.6) as the matrix
equation

where

N
akj = L Xj(Xi)Xk(Xi)

i=l a;

an M X M matrix, and

N
13k = L YiXk(Xi)

i=l a'f

a vector of length M.

M

L akjaj = 13k
j=l

or equivalently

or equivalently

(14.3.7)

[a]=AT·A (14.3.8)

[13]=AT ·b (14.3.9)

The equations (14.3.6) or (14.3.7) are called the normal equations of the
least-squares problem. They can be solved for the vector of parameters a by
the standard methods of Chapter 2, notably LU decomposition and backsub­
stitution or Gauss-Jordan elimination. In matrix form, the normal equations

[14.3 General Linear Least Squares 531

can be written as either

[a]. a = [,8] or as (14.3.10)

The inverse matrix Ojk =' [a]i.' is closely related to the probable (or,
more precisely, standard) nncertainties of the estimated parameters a. To
estimate these uncertainties, consider that

(14.3.11)

and that the variance associated with the estimate aj can be fonnd as in
(14.2.7) from

(14.3.12)

Note that ajk is independent of Yi, so that

(14.3.13)

> (Jom:eqllerLtly, we find that

(14.3.14)

final term in brackets is jnst the matrix [a]. Since this is the matrix
illv"rse of [0], (14.3.14) reduces immediately to

(14.3.15)

In other words, the diagonal elements of [0] are the variances (squared
';uELcel·tal.ntj·es) of the fitted parameters a. It should not surprise you to learn

the off diagonal elements Ojk are the covariances between aj and ak
. 14.2.10); but we shall defer discussion of these to §14.5.

We will now give a routine that implements the above formulas for the
linear least-squares problem, by the method of normal equations.

we wish to compute not only the solution vector a bnt also the co­
varian',e matrix [0], it is most convenient to use Gauss-Jordan elimination

'''~''' ...

.",'

Tf
, ~I!!:
>I'

'\ji
i"'~~'I:

11'11

,~ l;~

ill!
, lli~
,,~,d'

i· Hi:

): l~!i
~,l,

_·,tlil

: n ~

1:11_1'

532 Chapter 14. Modeling of Data

(routine gaussj of §2.1) to perform the linear algebra. The operation count,
in this application, is no larger than that for LU decomposition. If you have
no need for the covariance matrix, however, you can save a factor of 3 on
the linear algebra by switching to LU decomposition, without computation
of the matrix inverse.

We need to warn you that the solution of a least-squares problem directly
from the normal equations is rather susceptible to roundoff error. An alter­
native, and preferred, technique involves QR decomposition (§11.3 and §11.6)
of the design matrix A. This is essentially what we did at the end of §14.2 for
fitting data to a straight line, but without invoking all the machinery of QR
to derive the necessary formulas. Later in. this section, we will discuss other
difficulties in the least-squares problem, for which the cure is singular value
decomposition (SVD), of which we give an implementation. It turns out that
SVD also fixes the roundoff problem, so it is our recommended technique for
all but "easy" least-squares problems. It is for these easy problems that the
following routine, which solves the normal equations, is intended.

The routine below introduces one bookkeeping complication that is quite
useful in practical work. Frequently it is a matter of "art" to decide which
parameters ak in a model should be fit from the data set, and which should be
held constant at fixed values, for example values predicted by a theory or mea­
sured in a previous experiment. One wants, therefore, to have a convenient
means for "freezing" and "unfreezing" the parameters ak. In the following
routine the total number of parameters ak is denoted rna (called M above),
while mfit is the number of parameters which are to be adjusted in minimiz­
ing the best fit. As input to the routine, you supply a list lista. The first
mfit elements of lista contain the numbers of the parameters that are to be
adjusted. The remaining rna -mfi t parameters will be held fixed at their input
values. For example, if ma=8, rnfi t=4, and lista [1. .41 contains the num­
bers 3,1,7,5, then the parameters a3, a" a7, a5 will be adjusted. The other
parameters (a2,a4,a6,aS) will be held fixed at their input values; notice that
you must therefore initialize these input values before calling the program.
On output, any frozen variable will have its variance and all its covariances
set to zero in the covariance matrix.

static float sqrarg;
#define SQR(a) (sqrarg=(a),sqrarg*sqrarg)

void Ifit(x,y.sig.ndata,a,ma,lista,mfit,covar,chisq,funcs)
int ndata,ma,lista[],mfit;
float xC] ,y[] ,sig[] ,a[],**covar,*chisq;
void (*funcs)(); 1* ANSI: void (*funcs)(float,float *,int); *1
Given a set of points x[l .. ndata], y [1 .. ndata] with Individual standard deviations given
sig[1 . . ndata], use x2 minimization to determine mfit of the coefficients a[l .. ma] of a
tlon that depends linearly on a, Y = E,a;xafunc;(x). The array lista [1 .. ma] renumbers
parameters so that the first mfit elements correspond to the parameters actually being'
mined; the remaining ma-mfit elements are held fixed at their input values. The program
turns values for the ma fit parameters a, X2 = chisq, and the elements [1. .mfit] [1. ,mfit]
the covariance matrix covar [1 .. ma] [1. ,ma]. The user supplies a routine funcs (x, afunc ,mao
that returns the ma basis functions evaluated at x =x In the array afunc [1. ,ma] .
{

int k,kk,j,ihit,i;
float ym,wt,sum,sig2i.**beta,*afunc;
void gaussj () ,covsrt() ,nrerror() ,free_matrix() ,free_vector();

[14.3 General Linear Least Squares

float **matrix(),*vector();

beta=matrix(l,ma.l,l);
afunc=vector(l,ma);

533

kk=mfit+l: Check to see that lista contains a proper permutation of
for (j=l;j<=ma;j++) { the coefficients and fill in any missing members.

}

ihit=O;
for (k=l:k<=mfit;k++)

if (lieta[k] == j) ihit++;
if (ihit == 0)

lista[kk++]=j;
else if (ihit > 1) nrerror(IIBad LISTA permutation in LFIT-l");

if (kk 1= (ma+1» nrerror("Bad LISTA permutation in LFIT-2 rr);
for (j =1; j <=mfit; j ++) { Initrallze the (symmetric) matrix.

for (k=l;k<=mfit:k++) covar[j][k]=O.O;
beta[j] [1]=0.0;

}
for (i=l;i<=ndata;i++) { Loop over data to accumulate coefficients of the normal

}

(*funcs) (x[i] ,afune.ma); equations.

ym=y[i] ;
if (mfit < rna) Subtract off dependences on known pieces of the fitting

for (j=(mfit+i);j<=ma;j++) function.
ym -= a[lista[j]]*afunc[lista[j]];

sig2i=i.O/SQR(sig[i]);
for (j=l;j<=mfit;j++) {

}

wt=afunc [lista[j]] *sig2i;
for (k=i;k<=j;k++)

covar[j] [k] += wMafunc[lista[k]];
beta[j] [I] += ym*wt;

if (mfit > 1)
for (j::2;j<=mfit;j++) Fill In above the diagonal from symmetry.

for (k=i;k<=j-l;k++)
eovar[k] [j]=eovar[j] [k];

ganssj (covar ,mfit, beta,i) : Matrix solution.
for (j =i; j<=mfit; j ++) a [lista[j]] =beta [j] [i].; Partition solution to appropriate
*ehisq=O. 0; coefficients a.
for (i=i;i<=ndata;i++) { Evaluate x2 of the fit.

(*funes) (x[i] ,afune.ma);
for (sum=O.O.j=i;j<=ma;j++) sum += a[j]*afune[j];
*ehisq += SQR«y[i]-sum)/sig[i]);

}
eovsrt(eovar.ma.lista,mfit);
free_veetor(afune.l.ma);
free_matrix(beta,i.ma.l,l);

Sort covariance matrix to true order of fitting
coefficients.

That last call to a function covart is only for the purpose of spreading
the mf it X mf it covariances back into the full rna X rna covariance matrix, sorted
into the proper rows and columns and with zero variances and covariances set
for variables which were held frozen. Thus, e.g., the variance of variable ai

will be in its natural place covar [i] [i]. If, instead, you are willing to look
up variances via the index liata, then you can omit the call. ill that case,
e.g., the variance of variable number lista (j] will be in covar (j] (j].

The function covsrt is as follows.

"".~

Wf.

'1,~

"{I
" 'ii1i{~
<iiI

h,,~,f,Io

,·,·!HI

1,~···:t;

'.Wi'
,If,!
<~,~

; 'f1,~

"~l
:,,·t1il

, : ~\~ 1

INI

,."n .,

534 Chapter 14. Modeling of Data

void covsrt(covar,ma,lista,mfit)
float **covar;
tnt ma,lista[],mfit;
Given the covariance matrix covar [1 .. rna] [1 .. rna] of a fit for miit of rna total parameters, and
their ordering lista[1. . rna] , repack the covariance matrix to the true order of the parameters.
Elements associated with fixed parameters will be zero.
{

}

int i,j;
float swap;

for (j=l;j<ma;j++) Zero aU elements below diagonal.
for (i=j+l;i<=ma;i++) covar[i][j]=O.O;

for (i=l;i<mfit;i++) Repack off-diagonal elements of fit into correct loca-
for (j=i+l; j <=mfit; j++) { tlons below diagonal.

}

if (lista[j] > lista[i)
covar (Iiata [j]] [lista [i]] =covar [i] [j] ;

else
covar [lista [i]] [lista[j]]=covar[i] [j];

swap=covar[l] [1]; Temporarily store original diagonal elements in top row,
and zero the diagonal. for (j=l;j<=ma:j++) {

covar[l] [j]=covar[j] [j];
covar[j] [j]=O.O;

}

covar[lista[1]] [lista[l]]=swap; Now sort elements Into proper order on diagonal.
for (j=2; j <=mfit: j++) covar [lista[j]] [lista [j]] =covar [1] [jJ ;
for (j=2;j<=ma;j++) Finally, fiUln above diagonal by symmetry.

for (i=l;i<=j-l;i++) covar[i] [jl=covar[j] [i];

Solution by Use of Singula.r Va.lue Decomposition

In some applications, the normal equations are perfectly adequate for
linear least-squares problems. However, in many cases the normal equations
are very close to singular. A zero pivot element may be encountered during
the solution of the linear equations (e.g. in gauss j), in which case you get nO
solution at all. Or a very small pivot may occur, in which case you typically
get fitted parameters ak with very large magnitudes that are delicately (and
unstably) balanced to cancel out almost precisely when the fitted function
is evaluated.

Why does this commonly occur? The reason is that, more often than
experimenters would like to admit, data do not clearly distinguish between
two or more of the basis functions provided. If two such functions, or two dif­
ferent combinations of functions, happen to fit the data about equally well -
or equally badly - then the matrix [aj, unable to distinguish between
neatly folds up its tent and becomes singular. There is a certain math'"
matical irony in the fact that least-squares problems are both overdetermined
(number of data points greater than number of parameters) and underde-"
termined (ambiguous combinations of parameters exist); but that is how
frequently is. The ambiguities can be extremely hard to notice a priori
complicated problems.

Enter singular value decomposition (SVD). This would be a good
for you to review the material in §2.9, which we will not repeat here.

[___ ---------1-4-.-3-G-e-n-e-r-a-l-L-in~e-a-r-L-e-as--t~S~q~u~ar~e~s ____________ ~_5_3_5 __

the case of an overdetermined system, SVD produces a solution that is the
best approximation in the least-squares sense, cf. equation (2.9.10). That
is exactly what we want. In the case of an underdetermined system, SVD
produces a solution whose values' (for us, the ak's) are smallest in the least­
squares sense, cf. equation (2.9.8). That is also what we want: when some
combination of basis functions is irrelevant to the fit, that combination will be
driven down to a small, innocuous, value, rather than pushed up to delicately
canceling infinities.

In terms of the design matrix A (equation 14.3.4) and the vector b (equa­
tion 14.3.5), minimization of X2 in (14.3.3) can be written as

find a which minimizes (14.3.16)

Comparing to equation (2.9.9), we see that this is precisely the problem which
routines svdcmp and svbksb are designed to solve. The solution, which is
given by equation (2.9.12), can be rewritten as follows: If V and Venter
the SVD decomposition of A according to equation (2.9.1), as computed by
svdcmp, then let the vectors VCiJ i = 1, ... , M denote the columns of V (each
one a vector of length N); and let the vectors V CiJ; i = 1, . .. , M denote the
columns of V (each one a vector of length M). Then the solution (2.9.12) of
the least-squares problem (14.3.16) can be written as

M
_ " (VCi) . b) a - L.. . V(iJ

i=l W t

(14.3.17)

where the Wi are, as in §2.9, the singular values calculated by svdcmp.
Equation (14.3.17) says that the fitted parameters a are linear combina­

tions of the columns of V, with coefficients obtained by forming dot prod­
ucts of the columns of V with the weighted data vector (14.3.5). Though it
is beyond our scope to prove here, it turns out that the standard (loosely,
"probable") errors in the fitted parameters are also linear combinations of the
columns ofV. In fact, equation (14.3.17) can be written in a form displaying
these errors as

(14.3.18)

each ± is followed by a standard deviation. The amazing fact is that,
decOInpos"d in this fashion, the standard deviations are all mutually inde­
pelod,mt (uncorrelated). Therefore they can be added together in root-mean­

fashion. What is going on is that the vectors V C iJ are the principal
of the error ellipsoid of the fitted parameters a (see §14.5).

'".n

.",,'

~i':' ;.\
j~,

·.te/'
I~:

'i~"!f!t ,
l'L:i:;:

11/!
II?I

r:: v,~
i H~

W1r')!
IlIf

.,.lyj:

t,1I.111

,Hi .'"

536 Chapter 14. Modeling of Data

It follows that the variance in the estimate of a parameter OJ is given by

M M 2

2 '" 1 []2 '" (Vji) a (OJ) = ~ w 2 V(i) j = ~ -;;;
i=l ~ i=l t

(14.3.19)

whose result should be identical with (14.3.14). As before, you should not be
surprised at the formula for the cQvariances, here given without proof,

M

Cov(aj,ak) = L (Vji~ki)
i=I wi

(14.3.20)

We introduced this subsection by noting that the normal equations can
fail by encountering a zero pivot. We have not yet, however, mentioned how
SVD overcomes this problem. The answer is: If any singular value Wi is zero,
its reciprocal in equation (14.3.18) should be set to zero, not infinity. (Com­
pare the discussion preceding equation 2.9.7). This corresponds to adding
to the fitted parameters a a zero multiple, rather than some random large
multiple, of any linear combination of basis functions which are degenerate in
the fit. It is a good thing to do!

Moreover, if a singular value Wi is nonzero but very small, you should
also define its reciprocal to be zero, since its apparent value is probably an
artifact of roundoff error, not a meaningful number. A plausible answer to
the question "how small is small?" , is to edit in this fashion all singular values
whose ratio to the largest singular value is less than N times the machine
precision E. (You might argue for ,[N, Or a constant, instead of N as the
multiple; that starts getting into hardware-dependent questions.)

There is another reason for editing even additional singular values, ones
large enough that roundoff error is not a question. Singular value decomposi­
tion allows you to identify linear combinations of variables which just happen
not to contribute much to reducing the X2 of your data set. Editing these can
sometimes reduce the probable error on your coefficients quite significantly,
while increasing the minimum X2 only negligibly. We will learn more about
identifying and treating such cases in §14.5. In the following routine, the point
at which this kind of editing would occur is indicated.

Generally speaking, we recommend that you always use SVD techniques
instead of using the normal equations. SVD's only significant disadvantage
is that it requires an extra array of size N x M to store the whole design
matrix. This storage is overwritten by the matrix U. Storage is also required
for the M x M matrix V, but this is instead of the same-sized matrix for
the coefficients of the normal equations. SVD can be siguificantly slower than
solving the normal equations; however its great advantage, that it (theoreti­
cally) cannot fail more than makes up for the speed disadvantage.

In the routine that follows, the matrices u. v and the vector w are input
working space. The logical dimensions of the problem are ndata data
by rna basis functions (and fitted parameters). If you care only about

[14.3 General Linear Least Squares 537

-values a of the fitted parameters, then U J v J w contain no useful information
on output. If you want probable errors for the fitted parameters, read on.

#define TOL 1.0e-5

void svdfit(x.y.sig,ndata,R,ma,u,v,w,chisq,funcs)
float x[) .y[] ,sig[] .a[] .**u,**v,w[] .*chisq;
tnt ndata,ma;
void (*funcs)(); 1* ANSI: void (*funcs)(float,float *.int); *1
Given a set of points x[L .ndata]. y[1. .ndata] with Individual standard deviations given
by sig [1 .. ndata), use x 2 minimization to determine the coefficients a [1 .. ma] of the fitting
function Y = L;a;xafunc;(x). Here we solve the fitting equations using singular value decom­
position of the ndata by ma matrix, as in §2.9. Arrays u [1 .. ndata] [1 .. ma] , v [1 .. mal [1 .. ma] ,
and w[1. .ma] provide workspace on input; on output they define the singular value decom­
position, and can be used to obtain the covariance matrix. The program returns values for
the ma fit parameters a, and X2, ehisq. The user supplies a routine funes(x,afune.ma) that
returns the ma basis functions evaluated at x =x in the array afune [1 .. mal.
{

int j ,i;
float wmax.tmp.thresh,sum.*b.*afunc.*vector();
void svdcmp(),svbksb(),free_vector();

b=vector(l,ndata);
afunc=vector(l,ma);
for (i=l; i<=ndata; i++) { Accumulate coefficients of the fitting matrix.

(*funcs)(x[il.afunc,ma);
tmp=1.0/sig[1] ;
for O=l;j<=ma;j++) u[i] [j]=afunc[j]*tmp;
b [1] =y [1] *tmp;

}

svdcmp(u,ndata,ma,w,v);
wmax=O.O;
for (j=l;j<=ma;j++)

if (w[jl > wmax) wmax=w[j];
thresh=TOL*wmax;
for (j c l;j<=ma;j++)

Singular V<llue decomposition.

Edit the singular values, given Tal from the #define

statement, between here.

if (w[j] < thresh) w[j]=O.O; ... and here.

svbksb(u,w.v.ndata.ma,b.a);
*chisq=O.O; Evaluate chi-square.
for (i=l;i<=ndata;i++) {

}

(*funcs)(x[i],afunc,ma);
for (sum=O.O,j=l;j<=ma;j++) sum += a[jJ*afunc[j];
*chisq += (tmp=(y[i]-sum)/sig[i].tmp*tmp);

free_veetor(afunc.1,ma);
free_vector(b.l.ndata);

Feeding the matrix v and vector w output by the above program into
the following short routine, you easily obtain variances and covariances of
the fitted parameters a. The square roots of the variances are the standard
deviations of the fitted parameters. The routine straightforwardly implements
equatio:n (14.3.20) above, with the convention that singular values equal to

are recognized as having been edited out of the fit.

""" •. ,,.1

1'1:{";11
dJ.,1.It!

r :?I!~I
I: :~l;llql

... ,.1

Ii 'IW!.'!,(~.I
.111 ~
II WI':\,t.~1
:1 i'r~l:~~'ltl
" 'lI!li~~,1
.\. ,i;N
~ H;Wi l.!
! l{d:,~~1

rr'ti,ll

r '''lhl.1 1 ~li

rtl1HI

i-l"l\.~ 11
'';:1 :.~~I!

l~l ;;;:("1

i' 'nl-1J.1~1
I, .

538

void svdvar(v,ma,w,cvm)
float **V,W[] ,**cvm;
int ma;

Chapter 14. Modeling of Data

To evaluate the covariance matrix cvm [1 .. ma] [1 .. mal of the fit for ma parameters obtained by
svdfit, call this routine with matrices v [1 .. ma] [1 .. ma], w [1 .. ma] as returned from svdfit.
{

}

int k,j,i;
float sum,*wti,*vector();
void free_vector();

wti=vector(1,ma);
for (i=1;i<=ma;i++) {

wti[il"'o.o;
if (w[i]) wti[i]=1.0/(w[i]*w[i]);

}
for (i=1;i<=ma;i++) { Sum contributions to covariance matrix (14.3.20).

}

for (j=1;j<=i;j++) {

}

for (sum=O.O,k=1;k<=ma;k++) sum += vEil [k]*v[j] [k]*wti[k];
cvm [j] [i] =cvm [i] [j] =sum.;

free_vector(wti,1.ma);

Examples

Be awaxe that some appaxently nonlinear problems can be expressed so
that they are linear. For example, an exponential model with two parameters
a and b,

y(x) = aexp(-bx) (14.3.21)

can be rewritten as

log[y(x)] = c - bx (14.3.22)

which is linear in its parameters c and b.
Also watch out for "non-parameters," as in

y(x) =aexp(-bx+d)

Here the parameters a and d are, in fact, indistinguishable. This is a
example of where the normal equations will be exactly singular, and
SVD will find a zero singular value. SVD will then make a "least-sq
choice for setting a balance between a and d (or, rather, their equivalents
the linear model derived by taking the logarithms). However - and this
true whenever SVD gives back a zero singular value - you are better
to figure out analytically where the degeneracy is among your basis functiorl
and then make appropriate deletions in the basis set.

[

[14.3 General Linear Least Squares 539

Here are two examples for user-supplied routines funcs. The first one is
trivial and fits a general polynomial to a set of data:

void fpoly(x,p,np)
float x.p[]:
int np;
Fitting routine for a polynomial of degree NP-l, with coefficients in the array p[1. .np].
{

tnt j;

p[1]=1.0;
for (j=2;j<=np;j++) p[j]=p[j-l]*x;

}

The second example is slightly less trivial. It is UBed to fit Legendre
polynomials up to some order nl-i through a data set.

void fleg(x,pl,nl)
float x,pl[];
int nl;
FItting routine for an expansion wIth nl Legendre polynomials pI, evaluated using the recur­
rence relation as in §4.5.
{

}

int j;
float twox.f2.fl,d;

pH1]=1.0;
pH2]=x;
if (nl > 2) {

twox=2.0*x;
f2=x;
d=1.0;

}

for (j=3;j<=nl;j++) {
f1=d;

}

d += 1.0;
f2 += twox;
pl [j] =(f2*pl [j -1] -f'*pl [j -2]) /d;

RE,FE,R ENCES AND FURTHER READING:

Bevington, Philip R. 1969, Data Reduction and Error Analysis for the
Physical Sciences (New York: MCGraw-Hili), Chapters 8,9.

Lawson. Charles L., and Hanson, Richard J. 1974, Solving Least Squares
Problems (Englewood Cliffs, N.J.: Prentice-Hall).

Forsythe, George E., Malcolm, Michael A., and Moler, Cleve B. 1977,
Computer Methods for Mathematical Computations (Englewood
ClifFs, N.J.: Prentice-Hall), Chapter 9.

. !"I~
,111

'''l~llj

'i.ttl
" ~,II~fl

'>.
";',~~nll

</iIi
,jit:'&I:'
j ;,11'11\

""'1"1 ,'i'-i'
:,:tl!i'!
,,,I,lNI
1: .. "Mt
,rW~1

'''1I~

.i'tlJ/

.,-a;:H

.. "" .,;I:'Jt
:")·\1

",1tt'1j(

540 Chapter 14. Modeling of Data

14.4 Nonlinear Models

We now consider fitting when the model depends nonlinearly on the set of
M unknown parameters ak, k = 1,2, ... , M. We use the same approach as in
previous sections, namely to define a X' merit function and determine best-fit
parameters by its minimization. With nonlinear dependences, however, the
minimization must proceed iteratively. Given trial values for the parameters,
we develop a procedure that improves the trial solution. The procedure is
then repeated until X' stops (or effectively stops) decreasing.

How is this problem different from the general nonlinear function min­
imization problem already dealt with in Chapter 107 Superficially, not at
all: Sufficiently close to the minimum, we expect the X' function to be well
approximated by a quadratic form, which we can write as

• 1
X (a)"'1-d·a+-a·D·a

2

where d is an M-vector and D is an M x M matrix. (Compare equation
10.6.1.) If the approximation is a good one, we know how to jump from the
current trial parameters a cur to the minimizing ones amin in a single leap,
namely

amin = a cur +D- 1
. [-Vx2(acur)]

(Compare equation 10.7.4, and reread the discussion leading up to it.)
On the other hand, (14.4.1) might be a poor local approximation to the

shape of the function that we are trying to minimize at acur ' In that case,
about all we can do is take a step down the gradient, as in the steepest
descent method (§1O.6). In other words,

anext = a cur - constant X V' X2
(acur)

where the constant is small enough not to exhaust the downhill direction.
To use (14.4.2) or (14.4.3), we must be able to compute the gradient of

the X' function at any set of parameters ·a. To use (14.4.2) we also need the
matrix D, which is the second derivative matrix (Hessian matrix) of the X'
merit function, at any a.

Now, this is the crucial difference from Chapter 10: There, we had no way
of directly evaluating the Hessian matrix. We were only given the ability to
evaluate the function to be minimized and (in some cases) its gradient. There­
fore, we had to resort to iterative methods not just because our function
nonlinear, but also in order to build up information about the Hessian matri".
Sections 10.7 and 10.6 concerned themselves with two different techniques
building up this information.

14.4 Nonlinear Models 541

Here, life is much simpler. We know exactly the fonn of X2
, since it is

based on a model function that we ourselves have specified. Therefore the
Hessian matrix is known to us. Thus we are free to use (14.4.2) whenever we
care to do so. The only reason to use (14.4.3) will be failure of (14.4.2) to
improve the fit, signaling failure of (14.4.1) as a good local approximation.

Calculation of the Gradient and Hessian

The model to be fitted is

y= y(x;a) (14.4.4)

and the X2 merit function is

x2(a) = f. [Yi-~(xi;a)l2
i=l '/,

(14.4.5)

The gradient of X2 with respect to the parameters a, which will be zero at
the X2 minimum, has components

OX2 =_2f.[Yi-y~Xi;a)loy(xi;a) k=1,2, ... ,M
8ak i=l ui 8ak

,Takin,g an additional partial derivative gives

is conventional to remove the factors of 2 by defining

10X2
(3k = ---

2 oak

(14.4.6)

(14.4.8)

[al = ~D in equation (14.4.2), in terms of which that equation can
rewritten as the set of linear equations

M

L ak' Da, = (3k
l=l

(14.4.9)

t"1
~Iill ,

1:
":~l

'.";}:!
'J;':~i

"1\
',(',1
"'il\

,'"I
"r/

Pii'l
,h'.f!
, :,,~t
'/)j)

"'01 ,\l'j

,·<"Crt

i. l~

:1
i;

"If.-

[542 Chapter 14. Modeling of Data

This set is solved for the increments oa, that, added to the current approx­
imation, give the next approximation. In the context of least-squares,
matrix raj, equal to one-half times the Hessian matrix, is usually called
curvature matrix.

Equation (14.4.3), the steepest descent fonnula, translates to

oa, = constant X (3,

Note that the components ak' of the Hessian matrix (14.4.7) depend both
on the first derivatives and on the second derivatives of the basis functions
with respect to their parameters. Some treatments proceed to ignore the
second derivative without comment. We will ignore it also, but only after a
few comments.

Second derivatives occur because the gradient (14.4.6) already has a de::
pendence on 8y/8ak, so the next derivative simply must contain tenns in­
volving 82y/8a,8ak' The second derivative tenn can be dismissed when it is
zero (as in the linear case of equation 14.3.8)' or small enough to be negligible
when compared to the term involving the first derivative. It also has an addi­
tional possibility of being ignorably small in practice: The term multiplying
the second derivative in equation (14.4.7) is [Vi - Y(Xi; a)J. For a successful
model, this term should just be the random measurement error of each point.
This error can have either sign, and should in general be uncorrelated with
the model. Therefore, the second derivative terms tend to cancel out when'
summed over i.

Inclusion of the second-derivative tenn can in fact be destabilizing if the
model fits badly or is contaminated by outlier points that are unlikely to be
offset by compensating points of opposite sign. From this point on, we will
always use as the definition of ak' the fonnula

N
_"" 1 [8Y(Xi;a)8Y(Xi;a)]

CXkl- L...J-
i=l o'f aak aat

This expression more closely resembles its linear cousin (14.3.8). You should
understand that minor (or eVen major) fiddling with raj has no effect at all on
what final set of parameters a is reached, but ouly affects the iterative route
that is taken in getting there. The condition at the X2 minimum, that (3k = 0
for all k, is independent of how [aJ is defined.

Levenberg-Marquardt Method

Marquardt has put forth an elegant method, related to an earlier sugges­
tion of Levenberg, for varying smoothly between the extremes of the inverse­
Hessian method (14.4.9) and the steepest descent method (14.4.10). The latter
method is used far from the minimum, switching continuously to the former
as the minimum is approached. This Levenberg-Marquardt method (also

14.4 Nonlinear Models 543

Marquardt method) works very well in practice and has become the standard
of nonlinear least-squares routines.

The method is based on two elementary, but important, insights. Con­
sider the "constant" in equation (14.4.10). What should it be, even in order
of magnitude? What sets its scale? There is no information about the answer
in the gradient. That tells only the slope, not how far that slope extends.
Marquardt's first insight is that the components of the Hessian matrix, even
if they are not usable in any precise fashion, give some information about the
order-of-magnitude scale of the problem.

The quantity X2 is nondimensional, i.e. is a pure number; this is evident
from its definition (14.4.5). On the other hand, (3k has the dimensions of l/ak,
which may well be dimensional, i.e. have units like cm- 1 , or kilowatt-hours,

whatever. (In fact, each component of (3k can have different dimensions!)
constant of proportionality between (3k and Dak must therefore have the

dimensions of a~. Scan the components of [",J and you see that there is only
obvious quantity with these dimensions, and that is l/"'kk, the reciprocal

the diagonal element. So that must set the scale of the constant. But that
might itself be too big. So let's divide the constant by some (nondimen­

fudge factor .\, with the possibility of setting .\ :» 1 to cut down the
In other words, replace equation (14.4.10) by

1
Dal = ,----(31

/l.all
or (14.4.12)

is necessary that au be positive, but this is guaranteed by definition (14.4.11)
another reason for adopting that equation.

Marquardt's second insight is that equations (14.4.12) and (14.4.9) can
combined if we define a new matrix ",' by the following prescription

(j # k)
(14.4.13)

then replace both (14.4.12) and (14.4.9) by

M

L ",101 Dal = (3k (14.4.14)
l=l

.\ is very large, the matrix ",' is forced into being diagonally dominant,
equation (14.4.14) goes over to be identical to (14.4.12). On the other

as .\ approaches zero, equation (14.4.14) goes over to (14.4.9).
Given an initial guess for the set of fitted parameters a, the recommended

larc!uardt recipe is as follows:
• Compute x2 (a) .
• Pick a modest value for .\, say .\ = 0.001.

co,"

. :1'(;,

'~PI,\\

'~i

, S1f
I'~;!,!rtl'

'\iIi·
I :"4!~'1
),I"'lll\

H"f'Jf
.~H

I i'lH'!~;

:.~ ~::~
i H~II

r'f
;"l'Im

:Jq~

"~ :' ~l~
I I " It,:j~i

544 Chapter 14. Modeling of Data

• (t) Solve the linear equatiDns (14.4.14) for oa and evaluate x'(a+oa).
• If x'(a + oa) 2:x'(a), increase), bya factor of 10 (or any other

substantial factor) and go back to (t).
• If x'(a + oa) < x'(a), decrease), by a factor of 10, update the trial

solution a +- a + oa, and go back to (t).
Also necessary is a cDndition for stopping. Iterating to convergence (to

machine accuracy or to the roundDff limit) is generally wasteful and unneces­
sary since the minimum is at best only a statistical estimate of the parameters
a. As we will see in §14.5, a change in the parameters that changes X' by an
amount ~ 1 is never statistically meaningful.

Furthermore, it is not uncommon to find the parameters wandering
around near the minimum in a flat valley of complicated topology. The rea­
son is that Marquardt's method generalizes the methDd of nDrmal equations
(§14.3), hence has the same problem as that method with regard tD near­
degeneracy of the minimum. Outright failure by a zero pivot is pDssible, but
unlikely. More often, a small pivot will generate a large correctiDn which is
then rejected, the value of), being then increased. For sufficiently large A
the matrix [a'] is positive definite and can have no small pivots. Thus the
method does tend to stay away from zero pivots, but at the cost of a tendency.
to wander arDund doing steepest descent in very un-steep degenerate valleys.;

These considerations suggest that, in practice, one might as well stop iter­
ating on the first or second occasion that X' decreases by a negligible amount,
say either less than 0.1 absolutely or (in case roundoff prevents that being
reached) SDme fractiDnal amount like 10-3 . Don't stop after a step where X'
increases: that Dnly shows that), has not yet adjusted itself optimally.

Once the acceptable minimum has been found, one wants to set), ="
and compute the matrix

[C] == [or'

which) as before) is the estimated covariance matrix of the standard errors in
the fitted parameters a (see next section).

The following pair of functions encodes Marquardt's method for nDnlinear
parameter estimation. Much of the Drganization matches that used in
of §14.3. In particular the array lista should have as its first elements
list of the mfi t parameters, out of rna total, that are desired to be fitted,
remaining parameters being held at their input values.

The routine rnrqmin performs one iteration of Marquardt's method.
is first called (once) with alamda < 0, which signals the routine to initial
alamda is set Dn the first and all subsequent calls to the suggested value
), for the next iteration; a and chisq are always given back as the best
rameters found so far and their X'. When convergence is deemed satisfactDry,
set alarnda to zero before a final call. The matrices alpha and covar
were used as workspace in all previous calls) will then be set to the curvatUr.'
and covariance matrices for the converged parameter values. The argumentf
alpha, a, and chisq must not be modified between calls, nor should
be, except to set it tD zero for the final call. When an uphill step is

14.4 Nonlinear Models 545

chisq and a are given back with their input (best) values, but alamda is set
to an increased value.

The routine mrqmin calls the routine mrqcof for the computation of the
matrix ia] (equation 14.4.11) and vector {3 (equations 14.4.6 and 14.4.8). In
turn mrqcof calls the user-supplied routine funcs(x,a,y.dyda) which for
input values x == Xi and a == a calculates the model function y == y(xi;a) and
the vector of derivatives dyda == By / Bak.

void mrqmin(x,y.sig,ndata,a,ma,lista,mfit,covar,alpha,chisq.funcs,alamda)
float x[]. y[] • sig n . a[] I **covar. **alpha. *chisq, *alamda;
tnt ndata.ma,lista[].mfit;
void (*funcs)();
LeVenberg-Marquardt method, attempting to reduce the value x 2 of a fit between a set of
points x[i. . ndata]. y[1. .ndata] with individual standard deviations sig [1 .. ndata], and a
nonlinear function dependent on coefficients a[l .. rna]. The array lista [1 .. ma] numbers the
parameters a such that the first mfit elements correspond to values actually being adjusted;
the remaining ma-mfit parameters are held fixed at their input value. The program returns
current best-fit values for the rna fit parameters a, and x 2 = chisq. The [1 .. mUt] [1 .. mfit]
elements of the arrays eovar[1. .ma] [1 .. ma] , alpha[1. .ma] [1. .ma] are used as working
space during most Iterations. Supply a routine funcs(x,a,yfit,dyda,ma) that evaluates the

function yfit, and its derivatives dyda[1. .ma] with respect to the fitting parameters
a at x. On the first call provide an Initial guess for the parameters a, and set alamda<O
Jor initialization (which then sets alamda=.001). If a step succeeds ehisq becomes smaller
and alamda decreases by a factor of 10. If a step fails alamda grows by a factor of 10. You
must call this routine repeatedly until convergence is achieved. Then, make one final call with
81amdl."O., so that covar returns the covariance matrix, and alpha the curvature matrix.

int k.kk,j,ihit;
static float *da,*atry,**oneda,*beta.ochisq;
float *vector().**matrix();
void mrqcof() ,gaussj() ,covsrt() ,nrerror() ,free_matrix() ,free_ vector();

if (*alamda < 0.0) { initialization.

}

oneda=matrix(i,mfit, 1. 1) ; These variables are not freed until the last call, when
atry=vector(1,ma); alamda = O.
dac veetor(l.ma);
beta=veetor(l.ma);
kr-mfit+1;
for (j=l ~ j <=ma; j ++) { Does lista contain a proper permutation of the coef-

}

ihit=O; ficients?
for (k=l;k<=mfit;k++)

if (lista[k] == j) ihit++;
if (ihit == 0)

lista [kk++] =j ;
else if (ihit > 1) nrerror("Bad LISTA permutation in MRQMIN-l l1);

if (kk != ma+1) nrerror(IIBad LIBTA permutation in MRQMIN-2");
*alamda=0.001;
mrqeof(x,y,sig,ndata,a,ma,lista,mfit,alpha,beta,chisq,tunes);
ochisq=(*chisq);

for (j=1;j<=mfit;j++) { Alter linearized fitting matrix, by augmenting diagonal
tor (k=l;k<=mfit;k++) covar[j] [k]=alpha[j] [k]; elements.
covar[j] [j] =alpha[j] [j] * (1. O+(*alamda» ;
oneda[j] [l]=beta[j];

}

gaussj(covar,mfit,oneda,l);
for (j=l;j<=mfit;j++)

da [j] =oneda [j] [1] ;
it (*alamda == 0.0) {

covsrt(covar,ma,lista,mfit);

Matrix solution.

Once converged evaluate covariance matrix with alamda=O.

I I};):,:
. "tv

'~t'itl~
'(~r

" ;\,?j:
-Ii.!;

;i~'i~';

~!:~,t!tli
,·"f"'illl

"'!:'lril
::::~~~
I.·"~,~fr
;'1f.i1l

1"-1t'))l
r..tr

:·j~m

'Jm

I·:~it
'I,·ll.i~r

}

546

}

Cbapter 14.

free_vector(beta.l,ma);
free_vector(da,l.ma);
free_vector(atry.l,ma);
free_matrix(oneda,l,mfit,l,l);
return;

for (j:l;j<=ma;j++) atry[jJ=a[j];

Modeling of Data

for O=l;j<=mfit;j++) Did the trial succeed?
atry[lista[j]] '" a[lista[j]]+da[j];

mrqcof(x,y,sig,ndata,atry,ma,lista,mfit,covar,da,chisq,funes);
if (*chisq < ochisq) { Success, accept the new solution.

*alamda *= 0.1;
ochieq=(*chisq);
for (j=l;j<=mfit;j++) {

for (k=l;k<=mfit;k++) alpha[j] [k]=covar[j] [k];
beta[j]=da[j] ;
a[lista[j]]=atry[lista[j]] ;

}
} else {

}

*alamda *= 10.0;
*chisq=ochisq;

return;

Failure, increase alamda and return.

Notice the use of the routine covsrt from §14.3. This is only for rearrang­
ing the covariance matrix cevar into the order of all rna parameters. If you
are willing to look up nonzero components corresponding to the rnfi t fitted
variables through the index lista, then you can omit all reference to cevsrt.
The above- routine also makes use of

void mrqcof(x,y,sig,ndata,a,ma,lista,mfit,alpha,beta,chisq,funcs)
float xC] ,y(],sig(] ,a(] ,**alpha,beta(] ,*chisq;
int ndata,ma,lista[] ,mfit;
void (*funcs)(); 1* ANSI: void (*funcs)(float,float *,float *,float *,int);
Used by mrqmin to evaluate the linearized fitting matrix alpha [1. .mfit] [1. .mfit] , and
beta [1. .mfit] as In (14.4.8).
{

intk,j,i;
float ymod,wt,sig2i,dy,*dyda,*vector();
void free_vector();

dyda=vector(1,ma);
for (j=1; j <=mfit; j ++) { Initialize (symmetric) alpha, beta.

for (k=1;k<=j;k++) alpha[j] [k]=O.O;
beta[j]=O.O;

}

*chisq=O.O;
for (i=1;i<=ndata;i++) { Summation loop over all data.

(*funcs) (x[i] ,a,kymod,dyda,ma);
sig2i=1.0/(sig[i]*sig[i]);
dy=y[i]-ymod;
for (j=1;j<=mfit;j++) {

wt=dyda[lista[j]]*sig2i;
for (k=1;k<=j;k++)

}

alpha[j] [k] += wt*dyda[lista[k]];
beta[j] += dy*wt;

14.4 Nonlinear Models

}
for (j=2:j<=mfit;j++)

for (k=l;k<=j-l;k++)
free_vector(dyda.l.ma);

Fill in the symmetric side.
alpha[k] [j]=alpha[jl[k];

Example

547

The following function fgauss is an example of a user-supplied function
Used with the above routine mrqmin (in turn using mrqcof, covsrt,

. and gauss j) it fits for the model

(14.4.16)

is a sum of K Gaussians, each having a variable position, amplitude, and
We store the parameters in the order Bll Ell Gil B 2 ,E2J G2) ••• ,'BKJ

GK.

~11"""Qe <math.h>

the sum of naja Gausslans (14.4.16). The amplitude, center, and width of the
oauss;;,ms are stored In consecutive locations of a: a[1]= B k , a[i+1]= Ek, a[i+2]= Gk,

= 1, ... ,na/3, The dimensions of the arrays are a[l .. na] , dyda[l .. na]

int i;
float fac,ex,srg:

.y=o.O;
for (i=1;i<=na-l;i+=3)
{

}

arg=(x-a[i+l])/a[i+2] ;
ex=exp(-arg*arg);
fac=a[i]*ex*2.0*arg;
.y += a[i]*ex;
dyda[i]=ex;
dyda[i+l]=fac/a[i+2] ;
dyda[i+2]=fac*arg/a[i+2];

;~FIERE,N(:ES AND FURTHER READING:

Bevington, Philip R. 1969, Data Reduction and Error Analysis for the
Physical Sciences (New York: McGraw-HilI), Chapter 11.

Marquardt, D. W. 1963, J. Soc. Ind. Appl. Math., vol. 11, pp. 431-441.

Jacobs, David A.H., ed. 1977, The State of the Art in Numerical Analysis
(London: Academic Press), chapter 111.2 (by J.E. Dennis).

)f~;;:
'i['iNI
i~)!

'''~t.rr
.,1i~lJ
'«li"

! :~,t!"11
;;,IHI~~

I': ,'i:~(~
,~ii"

;,:!}~~i
i,,jt,\Itt:

i HrJllI

,"1!1);
ITltt:

~'+lmt

: ,~q~,

~,':;;;~
»·11<'

'l'lt,]r.::

of Data

14.5 Confidence Limits on Estimated Model
Parameters

Several times already in this chapter we have made statements about
standard errors, or uncertainties, in a set of M estimated parameters a.
have given some formulas for computing standard deviations or variances
individual parameters (equations 14.2.9, 14.3.15, 14.3.19), as well as some
mulas for covariances between pairs of parameters (equation 14.2.10;
following equation 14.3.15; equation 14.4.15).

In this section, we want to be more explicit regarding the precise meaning:
of these quantitative uncertainties, and to give further information about
quantitative confidence limits on fitted parameters can be estimated.
subject can get somewhat technical, and even somewhat confusing, so we
try to make precise statements, even when they must be offered without

Figure 14.5.1 shows the conceptual scheme of an experiment which
sures" a set of parameters. There is some underlying true set of parameter~
a'rue which are known to Mother Nature but hidden from the experimentm
These true parameters are statistically realized, along with random
ment errors, as a measured data set, which we will symbolize as D(o).
data set D(o) is known to the experimenter. He or she fits the data
model by X2 minimization or some other technique, and obtains measured!
i.e. fitted, values for the parameters, which we here denote a(O)'

Because measurement errors have a random component, 0(0)

unique realization of the true parameters atrue. Rather, there are infinitel:
many other realizations of the true parameters as "hypothetical data
each of which could have been the one measured, but happened not to be.
us symbolize these by D(1), D(2),' ... Each one, had it been realized, would hav,
given a slightly different set of fitted parameters, a(1), a(2), ... , respectivel~
These parameter sets a(i) therefore occur with some probability distributio!
in the M-dimensional space of all possible parameter sets a.
measured set a(O) is one member drawn from this distribution.

Even more interesting than the probability distribution of a(i) would
the distribution of the difference a(i) -a'rue' This distribution differs from
former one by a traoslation that puts Mother Nature's true value at the
If we knew this distribution, we would know everything that there is to
about the quantitative uncertainties in our experimental measurement

So the name of the game is to find some way of estimating or
mating the probability distribution of ali) - atru, without knowing a'rue

without having available to us an infinite universe of hypothetical data

General Case: Confidence Limits by Monte Carlo SimulatloIl,'

There is really only one way of making the desired estimation.
way sometimes comes dressed up with fancy analytical formulas, or somethn
naked as a purely numerical procedure; but conceptually it is the same in
cases. When various extra mathematical assumptions are known to hold,

14.5 Confidence Limits on Estimated Model Parameters

·0°
.#"

'>~~\,
,;,

.~e,~

'" • ______ , ~ <f.

Itrue parameters'

: a'rn. I L _____ ..1

actual data set
X'

min

fitted
parameters

"
.... ----, ----""'1
I . I I I
I hypothetIcal t---.. I 8, I
'dataset I I I L _____ ~ L. _____ ,I

r-----l r-----'
I . I I I I
I hypothetlca r--..... 3

2
I

I dataset I I I
'- ____ ____ ...J

,..----.., r-----'
" hypothetical I I I

~---"I a, I
I dataset I I I
k ___ __ J t- _____ ..J

14.5.1. A statistical universe of data sets from an underlying model. True parameters
are realized in a data set, from which fitted (observed) parameters ao are obtained.
experiment were repeated many times, new data sets and llew values of the fitted

•• ""mMlcs would be obtained.

way can be proved to give an "accurate" estimatej when they fail, its
stunal,e may be crude. But in either case it is just about the only game in

Here it is:
Although the measured parameter set a(O) is not the true one, let us
. a fictitious world in which it was the true one. Since we hope that
measured parameters are not too wrong, we hope that that fictitious

is not too different from the actual world with parameters a'rue. In
'~rticullar, let us hope - no, let us assume -- that the shape of the probability
istI·ib,"tibn a(i) - a(O) in the fictitious world is the same, or very nearly the

as the shape of the probability distribution a(i) - a'rue in the real
Notice that we are not assuming that a(O) and a'rue are equal; they

certainly not. We are only assuming that the way in which random errors
the experiment and data analysis does not vary rapidly as a function of

, so that a(O) can serve as a reasonable surrogate.
Now the distribution of a(i) - a(O) in the fictitious world is within our

to calculate (see Figure 14.5.2). Starting with our parameters a(O), we
simulate our own sets of "synthetic" realizations of these parameters as

:ynlGhetic data sets." The procedure is to draw random numbers from ap­
·opria1Ge distributions (cf. §7.2-§7.3) so as to mimic our best understanding
the measurement errors in our apparatus. With such random draws, we

,nst·.rnd data sets with exactly the same numbers of measured points, and
the same values of all control (independent) variables, as our actual

set D(o). Let us call these simulated data sets D(~), D&), By con­
these are supposed to have exactly the same statistical relationship

a(O) as the D(i) 's have to atrue.

Next, for each Dc';), perform exactly the same procedure for estimation
pararnel;en3, e.g. X2 minimization, as was performed on the actual data to
the parameters a(O), giving simulated measured parameters afl) , af2)'" ..

~"I II,il

':'iA" ". w;

:;-~r~

\i'ftiVl
,'il·

'.\.\1#
i' "'~\~
'l: ')"!~

hI) ,

;.i,%:~
';, ",~Il!
i"ii'!fII

('1m:'
,ff~i

~"'lm'

• _hl~1

:~f}
-;,\;.'

I 'r_i~:1

actual
data set

x'
min

Chapter 14.

G~\-O
~<

fitted I ~~
parameters

'.

Modeling of Data

'0· .ff'''
... ~:;?

synthetic
data set J

synthetic
data set 2

synthetic
data set 3

synthetic
data set 4

x'
min

Monte Carlo
parameters

a\"

D
~
L:....J

D
Figure 14.5.2. Monte Carlo simulation of an experiment. The fitted parameters from ~,<
actual experiment are used as surrogates for the true parameters. Computer-generated'
random numbers are used to simulate many synthetic data sets. Each of these is analyzed
to obtain its fitted parameters. The distribution of these fitted parameters around
(known) surrogate true parameters is thus studied.

Each simulated measured parameter set yields a point af,) - a(O)' Simulate'
enough data sets and enough derived simulated measured parameters,
you map out the desired probability distribution in M dimensions.

In fact, the ability to do Monte Carlo simulations in this fashion has
olutionized many fields of modern experimental science. Not only is one
to characterize the errors of parameter estimation :in a very precise way.
can also tryout on the computer different methods of parameter estimation;
or different data reduction techniques, and seek to minimize the uucertainty,
of the result according to any desired criteria. Offered the choice betweeJl.
mastery of a five-foot shelf of analytical statistics books and middling
at performing statistical Monte Carlo simulations, we would surely choose
have the latter skill.

Nevertheless, there are a few important analytic results which we
mention just below.

Rather than present all details of the probability distribution of errors
parameter estimation, it is common practice to summarize the distribution
the form of confidence limits. The full probability distribution is a functiol
defiued on the M -dimensional space of parameters a. A confidence region
confidence intervaQ is just a region of that M -dimensional space (hopefully
small region) that contains a certain (hopefully large) percentage of the
probability distribution. You point to a confidence region and say, e.g., ,
is a 99 percent chance that the true parameter values fall within this
around the measured value. ,\

It is worth emphasiziug that you, the experimenter, get to pick
the confidence level (99 percent in the above example), and the shape of
confidence region. The only requirement is that your region does include
stated percentage of probability. Certain percentages are, however,
ary in scientific usage: 68.3 percent (the lowest confidence worthy of quoting
90 percent, 95.4 percent, 99 percent, and 99.73 percent. Higher confidell'

14.5 Confidence Limits on Estimated Model Parameters

are conventionally "ninety-nine point nine . .. nine." As for shape, ob­
you want a region that is compact and reasonably centered on your

aeasUlrenlerlt a(a), since the whole purpose of a confidence limit is to inspire
anfid"l1<,e in that measured value. In one dimension, the convention is to use
line segment centered on the measured value; in higher dimensions, ellipses
ellipsoids are most frequently used.

You might suspect, correctly, that the numbers 68.3 percent, 95.4 per­
and 99.73 percent, and the use of ellipsoids, have some connection with

normal distribution. That is true historically, but not always relevant nowa­
In general, the probability distribution of the parameters will not be

and the above numbers, used as levels of confidence, are purely mat­
of convention.
Figure 14.5.3 sketches a possible probability distribution for the case

= 2. Shown are three different confidence regions which might usefully be
all at the same confidence level. The two vertical lines enclose a band

'horiz,anIGal inverval) which represents the 68 percent confidence interval for
variable a, without regard to the value of a2. Similarly the horizontal
enclose a 68 percent confidence interval for a2. The ellipse shows a 68

confidence interval for a, and a2 jointly. Notice that to enclose the
probability as the two bands, the ellipse must necessarily extend outside

both of them (a point we will return to below).

Use of Constant Chi-Square Boundaries as Confidence Limits

When the method used to estimate the parameters ala) is wi-square
linimizat;iOll, as in the previous sections of this chapter, then there is a natural

for the shape of confidence intervals, whose use is almost universal. For
observed data set D(a), the value of X2 is a minimum at ala). Call this

linil11l11m value X;;'in' If the vector a of parameter values is perturbed away
a(O), then X2 increases. The region within which X2 increases by no
than a set amount ~X2 defines some M dimensional confidence region

a(O). If ~X2 is set to be a large number, this will be a big region; if it
small, it will be small. Somewhere in between there will be woices of ~X2

cause the region to contain, variously, 68 percent, 90 percent, etc. of
tob,ability distribution for a's, as defined above. These regions are taken as

confidence regions for the parameters a(a).
Very frequently one is interested not in the full M-dimensional confidence

but in individual confidence regions for some smaller number v of pa-
1In"!.er·s. For example, one might be interested in the confidence interval

each parameter taken separately (the bands in Figure 14.5.3), in which
v = 1. In that case, the natural confidence regions in the v-dimensional

lbspa"e of the M-dimensional parameter space are the projections of the
I-dimenl,ional regions defined by fixed ~X2 into the v-dimensional spaces of

In Figure 14.5.4, for the case M = 2, we show regions corresponding
several valnes of ~X2. The one-dimensional confidence interval in a2 corre­

'Onrlin,lf to the region bounded by ~X2 = 1 lies between the lines A and A'.
Notice that the projection of the higher-dimensional region on the lower­

mension space is used, not the intersection. The intersection would be the

552 Chapter 14.

ai::l - a rO)2

68% confidence

Modeling of Data

t

68% confidence region
on a, and a2 jointly

68% confidence interval on a1

.. L(~~1:~"" . . ag;l - GrO)1 .. 7\ .• '. . .,

bias . " ...

Figure 14.5.3. Confidence intervals in 1 and 2 dimensions. The same fraction of measured
points (here 68%) lies (i) between the two vertical lines, (ii) between the two horizontal"
lines, (iii) within the ellipse.

I1X2 = 6.63

c:
I1X2 = 2.71

I ---J..--l1x 2
= l.00

I1X2 = 2.30

C'

Figure 14.5.4. Confidence region ellipses corresponding to values of chi-square larger
the fitted minimum. The solid curves, with .6.X2 = 1.00,2.71,6.63 project onto
dimensional intervals AA', BB', CO'. These intervals - not the ellipses themselves,!
contain 68.3%, 90%, and 99% of normally distributed data. The ellipse that contains 68.3:
of normally distributed data is shown dashed, and has .6.X2 = 2.30. For additional -­
ical values, see accompanying table.

14.5 Confidence Limits on Estimated Model Parameters

band between Z and Z'. It is never used. It is shown in the figure only for
the purpose of making this cautionary point, that it should not be confused
with the projection.

Probability Distribution of Parameters in the Normal Case

You may be wondering why we have, in this section up to now, made
no connection at all with the error estimates that come out of the X2 fitting
prc)cedure, most notably the covariance matrix Cij. The reason is this: x'
,minilnh:ation is a useful means for estimating parameters even if the measure-

errors are not nonnally distributed. While nonnally distributed errors
required if the X2 parameter estimate is to be a maximum likelihood esti­

(§.l4.1), one is often willing to give up that property in return for the
'rellatiive convenience of the X2 procedure. Only in extreme cases, measurement

distributions with very large "tails," is X2 minimization abandoned in
of more robust techniques, as will be discussed in §14.6.

However, the formal covariance matrix that comes out ofaX2 mini­
lni"ation has meaning only if (or to the extent that) the measurement errors
"::;'l~~;~dare normally distributed. In the case of nonnormal errors, you are
.I,: "

• to fit for parameters by minimizing X2
• to use a contour of constant LI. X2 as the boundary of your confidence

region
• to use Monte Carlo simulation or detailed analytic calculation in de­

termiuing which contour LI. X2 is the correct one for your desired
confidence level

• to give the covariance matrix Cij as the "formal covariance matrix of
the fit on the assumption of normally distributed errors."

are not allowed
• to interpret Cij as the actual squared standard errors of the parameter

estimation
• to use fonnulas that we now give for the case of normal errors, which

establish quantitative relationships among Ll.X2, Cij, and the
confidence level.

Here are the key theorems that hold when (i) the measurement errors are
. distributed, and either (ii) the model is linear in its parameters or
the sample size is large enough that the uncertainties in the fitted par am­
a do not extend outside a region in which the model could be replaced

a suitable linearized model. [Note that condition (iii) does uot preclude
use of a nonlinear routine like mqrfi t to find the fitted parameters.]
Theorem A. X;'in is distributed as a chi-square distribution with N - M

offreedom, where N is the number of data points and M is the number
fitted parameters. This is the basic theorem which lets you evaluate the

)odne:ss-,of-ifit of the model, as discussed above in §14.1. We list it first to
you that unless the goodness-of-fit is credible, the whole estilnation

'PltTam.,te!" is suspect.

"II

,.,,~'

',~I

\, ,~f

.'1
~: t'

'I IJI~

'ii' il~
'''1 iN~ ., ,.

,: ;1~
:,J:!I
'" '!!~

, " 1'~

:;:i

;:\
, ' .. ~
"i~

Chapter 14. Modeling of Data

Theorem B. If a&) is drawn from the universe of simulated data
with actual parameters a(O), then the probability distribution of 8a '= a&)
a(O) is the multivariate normal distribution

P(8a) da, ... daM = const. X exp (-~8a. [a]· 8a) da"" daM

where [a] is the curvature matrix defined in equation (14.4.8).
Theorem C. If af;) is drawn from the universe of simulated data

with actual parameters a(O), then the quantity L'l.X2
=0 xZ(a(;)) - x2(a(0»)

distributed as a chi-square distribution with M degrees of freedom. Here
XZ's are all evaluated using the fixed (actual) data set D(o). This theorem'
makes the connection between particular values of L'l. XZ and the fraction
the probability distribution that they enclose as an M-dimensional
i.e., the confidence level of the M-dimensional confidence region.

Theorem D. Suppose that af;) is drawn from the universe of simulate<:\
data sets (as above), that its first v components a" ... , av are held fixed,
that its remaining M - v components are varied so as to minimize X2.

this minimum value X~. Then .6X~ == X~ - X~in is distributed as a chi-squaD
distribution with v degrees of freedom. If you consult Figure 14.5.4, you
see that this theorem COilllects the projected L'l.X2 region with a confidenc!
level. In the figure, a point that is held fixed in az and allowed to vary in
minimizing XZ will seek out the ellipse whose top or bottom edge is tangent
to the line of constant az, and is therefore the line that projects it onto
smaller dimensional space.

As a first example, let us consider the case v = 1, where we want
find the confidence interval of a single parameter, say a,. Notice that
chi-square distribution with v = 1 degree of freedom is the same distributiol
as that of the square of a single normally distributed quantity. Thus L'l.X~ <
occurs 68.3 percent of the time (1-0" for the normal distribution), L'l.X~ <
occurs 95.4 percent of the time (2-0" for the normal distribution), L'l.X~ <
occurs 99.73 percent of the time (3-0" for the normal distribution), etc. In
manner you find the L'l.X~ which corresponds to your desired confidence
(Additional values are given in the accompanying table.)

Let 8a be a change in the parameters whose first component is arbitrar
8a" but the rest of whose components are chosen to minimize the L'l.Xz.
Theorem D applies. The value of L'l.Xz is given in general by

L'l.x2 = 8a· [a] ·8a

which follows from equation (14.4.8) applied at X;;'in where 13k = O.
8a by hypothesis minimizes X2 in all but its first component, the
through M'h components of the normal equations (14.4.9) continue to

14.5 Confidence Limits on Estimated Model Parameters

as a Function Level and Freedom
1/

1 2 3 4 5 6
1.00 2.30 3.53 4.72 5.89
2.71 4.61 6.25 7.78 9.24 10.6
4.00 6.17 8.02 9.70 11.3 12.8
6.63 9.21 11.3 13.3 15.1 16.8
9.00 11.8 14.2 16.3 18.2 20.1
15.1 18.4 21.1 23.5 25.7 27.8

'l'tler€,fore, the solution of (14.4.9) is

(14.5.2)

c is one arbitrary constant that we get to adjust to make (14.5.1) give
desired left-hand value. Plugging (14 .. 5.2) into (14.5.1) and using the fact

[C) and [a) are inverse matrices of one another, we get

c = oat/Cll and (14.5.3)

(14.5.4)

At last! A relation between the confidence interval ±oa, and the formal
,,,,,cm,,,u error IT1 '" VCll' Not unreasonably, we find that the 68 percent
confiden"e interval is ±IT1, the 95 percent confidence interval is ±2IT" etc.

These considerations hold not just for the individual parameters ai, but
for any linear combination of them: If

M

b =. L Ciai = c . a
k=l

the 68 percent confidence interval on b is

ob = ±yc . [C) . c

(14.5.5)

(14.5.6)

However, these simple, normal-sounding numerical relationships do not
in the case 1/ > 1. In particular, ~X2 = 1 is not the boundary, nor
it project onto the boundary, of a 68.3 percent confidence region when

1. If you want to calculate not confidence intervals in one parameter, but

'->I,t,\]1
,~:l:

-';j:lr-~
:!"~l;'ljl­

"j1;,'

~,;;'IIIl~

'i!;i!\l:
"-"n~~
H"i'''

:::I~;~~
,. :',~II~I'
"",11!1iJ1

"f'TI~1i

j. l~.-~

JJlr
I""':

,- ,~:~?!

,1':1
'''I:

14. of Data

confidence ellipses in two parameters jointly, or ellipsoids in three, or higher,
then you must follow the following prescription for implementing Theorems
C and D above:

• Let v be the number of fitted parameters whose joint confidence region
you wish to display, v ~M. Call these parameters the "param­
eters of interest."

• Let p be the confidence limit desired, e.g. p = 0.68 or p = 0.95.
• Find Ll. (i.e. Ll.X2) such that the probability of a chi-square variable

with v degrees of freedom being less than Ll. is p. For some useful
values of p and v, Ll. is given in the table. For other values, you
can use the routine gammq and a simple root-finding routine (e.g.
bisection) to find Ll. such that gammq(v /2, Ll./2) = 1 - p.

• Take the M x M covariance matrix [CI = [<>1- 1 of the chi-square fit.
Copy the intersection of the v rows and columns corresponding:
to the parameters of interest into a v x v matrix denoted [Cpro;l.

• Invert the matrix [Cpro; I. (In the one-dimensional case this was
taking the reciprocal of the element C 11')

• The equation for the elliptical boundary of your desired confidence
region in the v-dimensional subspace of interest is

Ll. = 8a' . [Cpro;I-1 ·8a'

where 8a' is the v-dimensional vector of parameters of interest.

If you are confused at this point, you may find it helpful to compare
14.5.4 and the accompanying table, considering the case M = 2 with v = 1
and v = 2. You should be able to verify the following statements: (i) The
horizontal band between C and C' contains 99 percent of the probability
distribution, so is a confidence limit on a2 alone at this level of confidence ..
(ii) Ditto the band between Band B' at the 90 percent confidence
(iii) The dashed ellipse, labeled by Ll.X2 = 2.30, contains 68.3 percent of
probability distribution, so is a confidence region for a, and a2 jointly, at
level of confidence.

Confidence Limits from Singular Value Decomposition

When you have obtained your X2 fit by singular value decomposition:
(§14.3), the information about the fit's formal errors comes packaged in a'
somewhat different, but generally more convenient, form. The columns of the
matrix V are an orthonormal set of M vectors which are the principal axes
the Ll.X2 = constant ellipsoids. We denote the columns as V (1) ..• V
lengths of those axes are inversely proportional to the corresponding singular
values w, ... WM; see Figure 14.5.5. The boundaries of the ellipsoids are
given by

Ll.X2 = Wr(V(l) . 8a)2 + ... + Wl,(V(M) ·8a?

14.5 Confidence Limits on Estimated Model Parameters '

a,

~-------------------------------al

Relation of the confidence region ellipse .6..X2 = 1 to quantities computed
,hi gular value decomposition. The vectors V (i) are unit vectors along the principal

confidence region. The semi-axes have lengths equal to the reciprocal of the
,b,gullar values Wi· If the axes are all scaled by some constant factor el, .6..X2 is scaled by

factor 0:2 .

is the justification for writing equation (14.3.18) above. Keep in mind
it is much easier to plot an ellipsoid given a list of its vector principal
than given its matrix quadratic form!

The formula for the covariance matrix [C] in terms of the columns V(i) is

M 1
[C] = L .V(i) 0V(i)

w· i=l t

AND FURTHER READING:

Avni, Y. 1976, Astrophysical Journal, vol. 210, pp. 642-646.

(14.5.9)

(14.5.10)

Lampton, M., Margon, M., and Bowyer, S. 1976, Astrophysical Journal,
vol. 208. pp. 177-190.

Brownlee, K.A. 1965, Statistical Theory and Methodology, 2nd ed. (New
York: Wiley).

Martin, B.R. 1971, Statistics for Physicists (New York: Academic Press).

I"''''

'1'1

i,I,1

-".Hi

iI'

'il~1t

·.'>'11

!!"\~:

":!J~l

:,~'in
.:r-~f :
''''I!~

«-,,~

.,,1

.~ ,-,
',~

558 Ohapter 14. Modeling of Data

14.6 Robust Estimation

The concept of robustness has been mentioned in passing several times
already. In §13.2 we noted that the median was a more robust estimator of
central value than the mean; in §13.8 it was mentioned that rank correla­
tion is more robust than linear correlation. The concept of outlier points as
exceptions to a Gaussian model for experimental error was discussed in §14.1.

The term "robust" was coined in statistics by G.E.P. Box in 1953. Various
definitions of greater or lesser mathematical rigor are possible for the term,
but in general, referring to a statistical estimator, it means "insensitive to
small departures from the idealized assumptions for which the estimator is
optimized." The word "small" can have two different interpretations, both
important: either fractionally small departures for all data points, or else
fractionally large departures for a small number of data points. It is the
latter interpretation, leading to the notion of outlier points, that is generally
the most stressful for statistical procedures.

Statisticians have developed various sorts of robust statistical estimators.
Many, if not most, can be grouped in OIle of three categories.

M-estimates follow from maximum-likelihood arguments very much
equations (14.1.5) and (14.1.7) followed from equation (14.1.3). M-estimates
are usually the most relevant class for model-fitting, that is, estimation
parameters. We therefore consider these estimates in some detail below.

L-estimaies are "linear combinations of order statistics." These are
applicable to estimations of central value and central tendency, though
can occasionally be applied to some problems in estimation of parameters.
Two "typical" L-estimates will give you the general idea. They are (i)
median, and (ii) Tukey's trimean, defined as the weighted average of the
second, and third quartile points in a distribution, with weights 1/4, 1/2,
1/4 respectively.

R-estimates are estimates based on rank tests. For example, the
ity or inequality of two distributions can be estimated by the Wilcoxon
of computing the mean rank of one distribution in a combined sample
both distributions. The Kolmogorov-Smirnov statistic (equation 13.5.4)
the Spearman rank-order correlation coefficient (13.8.1) are R-estimates
essence, if not always by formal definition.

Some other kinds of robust tecimiques, corning from the fields of
control and filtering rather than from the field of mathematical statistics,
mentioned at the end of this section. Some examples where robust statist
methods are desirable are shown in Figure 14.6.1.

Estimation of Parameters by Local M-estimates

Suppose we know that our measurement errors are not normally
tributed. Then, in deriving a maximum-likelihood formula for the estim

(b)

14.6 Robust Estimation

narrow
~ central peak

tail of
/oUlJierS

robust straight-line fit

Figure 14.6.1. Examples where robust statistical methods are desirable: (a) A one-dimen­
sional distribution with a tail of outliers; statistical fluctuations in these outliers can prevent
accurate determination of the position of the central peak. (b) A distribution in two di­
mensions fitted to a straight line; non-robust techniques such as least-squares fitting can
have undesired sensitivity to outlying points.

parameters a in a model y(x; a), we wonld write instead of equation (14.1.3)

N

P = II {exp [-p(Yi,Y {Xi; a})] ~y} (14.6.1)
i=l

the function P is the negative logarithm of the probability density.
Taking the logarithm of (14.6.1) analogously with (14.1.4), we find that we
want to minimize the expression

N

LP(Yi,y{xi;a}) (14.6.2)
i=l

Very often, it is the case that the function P depends not independently
on its two arguments, measured Yi and predicted Y(Xi), but only on their
difference. at least if scaled by some weight factors "i which we are able to

" ~!'

: d~

':"'i
~I'

:-111)1

~':1.~,

~ ":1~,

~I, '

:.:,;rJ
,m~

I'''I!.'!I

n~

.. :1

;;;

:.~

':7l

Chapter 14. of Data

assign to each point. In this case the M-estimate is said to be local, and
can replace (14.6.2) by the prescription

N

minimize over a I> (Yi - Y(Xi; a))
2=1 u~

where the function p(z) is a function of a single variable z "" [Yi -
If we now define the derivative of p(z) to be a function 'IjJ(z),

'IjJ(z) "" dp(z)
dz

then the generalization of (14.1.7) to the case of a general M-estimate is

N

0= L ~'IjJ (Yi - Y(Xi)) (aY(Xi;a))
i=l 0'2 Ui oak

k=l, ... ,M

If you compare (14.6.3) to (14.1.3), and (14.6.5) to (14.1.7), you see
once that the specialization for normally distributed errors is

1 p(z) = _Z2
2

'IjJ(z) = z (normal)

If the errors are distributed as a double or two-sided exponential, namely

Prob {Yi - Y(Xil} ~ exp (-IYi -:'(Xi) I)

then, by contrast,

p(X) = Izl 'IjJ(z) = sgn(z) (double exponential)

Comparing to equation (14.6.3), we see that in this case the maximum
hood estimator is obtained by minimizing the mean absolute deviation,
than the mean square deviation. Here the tails of the distribution, although
exponentially decreasing, are asymptotically much larger than any
sponding Gaussian.

A distribution with even more extensive - therefore sometimes
more realistic - tails is the Cauchy or Lorentzian distribution,

1
Prob {Yi - Y(Xi)} ~ 1 ("'-Y(X;))"

1 + '2 Ui

14.6 Robust Estimation

z
,p(z) = 1 + !Z2

2

(Lorentzian)

561

(14.6.lO)

Notice that the ,p function occurs as a weighting function in the gener­
alized normal equations (14.6.5). For normally distributed errors, equation
(14.6.6) says that the more deviant the points, the greater the weight. By con­
trast, when tails are somewhat more prominent, as in (14.6.7), then (14.6.8)
says that all deviant points get the same relative weight, with only the sign
information used. Finally, when the tails are even larger, (14.6.10) says the ,p
increases with deviation, then starts decreasing, so that very deviant points -
the true outliers - are not counted at all in the estimation of the parameters.

This general idea, that the weight given individual points should first in­
crease with deviation, then decrease, motivates some additional prescriptions
for ,p which do not especially correspond to standard, textbook probability
distributions. Two examples are

Andrew's sine

,p(z) = { sin~/c) Izl < CK

Izl > CK
(14.6.11)

the measurement errors happen to be normal after all, with standard de­
viations <Ii, then it can be shown that the optimal value for the constant C

= 2.l.
Tukey'8 biweight

{
z(1- z2 /e2)2

,p(z) = 0
Izl < e
Izl > C

the optimal value of e for normal errors is e = 6.0.

Numerical Calculation of M-estimates

(14.6.12)

To fit a model by means of an M-estimate, you first decide which M­
estimate you want, that is, which matching pair p, ,p you want to use. We

. rather like (14.6.8) or (14.6.lO).
You then have to make Hobson's choice between two fairly difficult prob­

Either find the solution of the nonlinear set of M equations (14.6.5), or
minimize the single function in M variables (14.6.3).
Notice that the function (14.6.8) has a discontinuous,p, and a discontinu­

derivative for p. Such discontinuities frequently wreak havoc on both gen­
nonlinear equation solvers and general function minimizing routines. You

now think of rejecting (14.6.8) in favor of (14.6.10), which is smoother .
. H()w,wer, you will find that the latter choice is also bad news for many general

Ill·

, !j~ ,

\;,).1

",,'1,:
(",.
/:,1,1
'.
'"llfJll l

!' 1~ll '

.,!:~~ I
"'(1111 1
we

I '-~11
,~;;~' :
J"'I!~1

y,~il
l'

'I ".I'~ I

,,;i'

,;~

. ,',t'

>.'::1'

.,:1

14. Modeling of Data

equation solving or minimization routines: small changes in the fitted param.
eters can drive ..p(z) off its peak into one or the other of its asymptotically
small regimes. Therefore, different terms in the equation spring into or out
of action (almost as bad as analytic discontinuities).

Don't despair. If your computer budget (or, for personal computers,
patience) is up to it, this is an excellent application for the downhill simplex
minimization algorithm exemplified in amoeba §1O.4. That algorithm maho

no assumptions about continuity, it just oozes downhill. It will work
virtually any sane choice of the function p.

It is very much to your (financial) advantage to find good starting
ues, however. Often this is done by first fitting the model by the standard
(nonrobust) techniques, e.g. as described in §14.3 or §14.4. The fitted para.m.
eters thus obtained are then used as starting values in amoeba, now using
robust choice of p and minimizing the expression (14.6.3).

Fitting a Line by Minimizing Absolute Deviation

Occasionally there is a special case that happens to be much easier
is suggested by the general strategy outlined above. The case of equations
(14.6.7)-(14.6.8), when the model is a simple straight line

y(x; a, b) = a + bx

and where the weights (Ii are all equal, happens to be such a case. The problem'
is precisely the robust version ofthe problem posed in equation (14.2.1)
namely fit a straight line through a set of data points. The merit function;
to be minimized is

N

LIYi -a-bxil
i=l

rather than the X2 given by equation (14.2.2).
The key simplification is based on the following fact: The median eM

a set of numbers ei is also that value which minimizes the sum of the absoh
deviations

Llei -eMI

(Proof: Differentiate the above expression with respect to eM and set
to zero.)

It follows that, for fixed b, the value of a which minimizes (14.6.14) is

a = median {Vi - bXi}

Equation (14.6.5) for the parameter b is

N

o = ~Xi Sgu(Yi - a - bXi) (14.6.16)
i=l

If we replace a in this equation by the implied function arb) of (14.6.15),
then we are left with an equation in a single variable which can be solved
by bracketing and bisection, as described in §9.1. (In fact, it is dangerous
to use any fancier method of root-finding, because of the discontinuities in
equation 14.6.16.)

Here is a routine which does all this. It calls sort (§8.2) to find the
median by the sorting method, cf. §13.2. The bracketing and bisection are
built in to the following routine, as is the X' solution which generates the
initial guesses for a and b. Notice that the evaluation of the right-hand side
of (14.6.16) occurs in the function rofune, with communication via global
(top-level) variables.

#include <math.h>

int ndatat=O; 1* defining declaration */
float *xt=O.*yt=O,aa=O.O,abdevt=O.O; 1* defining declaration */

void medfit(x,y,ndata,a,b,abdev)
float *x,*y,*a,*b.*abdev;
int ndata;
Fits y = a + bx by the criterion of least absolute deviations. The arrays x[1. .ndata] and
y[1. .ndata] are the input experimental points. The fitted parameters a and b are output,
along with abdev which is the mean absolute deviation (in y) of the experimental points from

fitted line. This routine uses the routine rofunc, with communication via global variables.

int j;
float bb.bl,b2.del.f,fl,f2,sigb,temp;
float 8X=O.O.sy=O.O.8Xy=O.O,sxx=O.O,chisq=O.O;
float rofune();

ndatat=ndata;
xt=x;
yt=y;
for (j=1;j<=ndata;j++) {

sx += x[j];

}

sy += y[j];
sxy += x[j]*y[j];
sxx += x[jJ*x[j];

del=ndata*sxx-sx*sx;

As a first guess for a and b, we will find the least-squares
fitting line.

aa=(sxx*sy-sx*sxy) /del; Least-squares solutions.
bb=(ndata*sxy-sx*sy)/del;
for (j=1;j<=ndata;j++)

chisq += (temp=y[j]-(aa+bb*x[j]),temp*temp);
sigb=sqrt(chisq/del); The standard deviation will give some idea of how big
b1=bb; an Iteration step to take.
f1=rofunc(b1);
b2=bb+«fi > 0.0) ? fabs(3.0*sigb) -fabs(3.0*sigb»; Guess bracket as 3-a
f2=rofunc(b2); away, in the downhill direction known from i1.

while (f1*f2 > 0.0) { Bracketing.

, ,.'
1,',11'

,"'"

',1:.1111

I:"~II

1"%'

::,;~I:

'Im~il

,::/ji
'iiPq

"'''tit
,

j<.1Ii

will

.:!il

}

564

}

bb=2.0*b2-bl;
bl=b2;
f1=f2;
b2=bb;
f2=rofunc(b2);

Chapter 14. Modeling of Data

sigh=D. 01 "'sigb; Refine until error a negligible number of standard devi-
while (fabs(b2-bl) > sigb) { atlons.

}

bb=O. 6* (bl+h2) ; Bisection.
if (bb == bi I I bb == b2) break;
f=rofunc (bb) ;
if (f*f1)= 0.0) {

f1=f;
bl=bb;

} else {

}

f2=f;
b2=bb;

*a=aa;
*b=bb;
*abdev=abdevt/ndata;

#include <math,h>

extern int ndatat: 1* defined in MEDFIT *1
extern float *xt,*yt,aa,abdevt;

float rofunc(b)
float b;

Evaluates the right-hand side of equation (14.6.16) for a given value of h. Communication
with the program medfit is through global variables.
{

}

lnt j,ni,nmh,nml;
float *arr,d,sum=O.O,*vector();
void sort(),free_vector();

arr=vector(l,ndatat);
nl=ndatat+l ;
nml=nl/2;
nmh=nl-nml;
for (j=l;j<=ndatat;j++) arr[j]=yt[j)-b*xt[j);
sort(ndatat,arr);
aa=0.6*(arr[nml]+arr[nmh));
abdevt=O.O;
for (j=l;j<=ndatat;j++) {

d=yt [j) - (b*xt [j) +aa);
abdevt += fabs(d);

}
sum += d > 0.0 ? xt[j) -xt[j);

free_vector(arr,l,ndatat);
return sum;

14.6 Robust Estimation 565

Other Robust Techniques

Sometimes you may have a priori knowledge about the probable values
and probable uncertainties of some parameters that you are trying to estimate
from a data set. In such cases you may want to perform a fit that takes
this advance information properly into account, neither completely freezing a
parameter at a predetermined value (as in Hit §14.3) nor completely leaving
it to be determined by the data set. The formalism for doing this is called
"use of a priori covariances."

A related problem occurs in signal processing and control theory, where it
is sometimes desired to "track" (i.e. maintain an estimate of) a time-varying
signal in the presence of noise. If the signal is known to be characterized
by some number of parameters that vary only slowly, then the formalism
of Kalman filtering tells how the incoming, raw measurements of the signal
should be processed to produce best parameter estimates as a function of time.
For example, if the signal is a frequency-modulated sine wave, then the slowly
varying parameter might be the instantaneous frequency. The Kahnan filter
for this case is called a phase-locked loop and is implemented in the circuitry
of good radio receivers.

Consult Bryson and Ho, or Jazwinski for details on these and other
techniques.

REFERENCES AND FURTHER READING:

Huber, P.J. 1981. Robust Statistics (New York: Wiley).

Launer, R.L., and Wilkinson, G.N., eds. 1979, Robustness in Statistics
(New York: Academic Press).

Bryson, A. E., and Ho, V.c. 1969, Applied Optimal Control (Waltham,
Mass.: Ginn).

Jazwinskl. A. H. 1970, Stochastic Processes and Filtering Theory (New
York: Academic Press).

..,0""

	14pt1.pdf
	14pt2

