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It is usually straightforward to calculate the result of a practical experiment
in the laboratory. Estimating the accuracy of that result is often regarded by
students as an obscure and tedious routine, involving much arithmetic. An
estimate of the error is, however, an integral part of the presentation of the
results of experiments.

This textbook is intended for undergraduates who are performing labora-
tory experiments in the physical sciences and who have to calculate errors for the
first time. It is not a formal textbook on statistics, but is a practical guide on
how to analyse data and estimate errors. The necessary formulae for performing
calculations are given, and the ideas behind them are explained. Specific exam-
ples are worked through step by step in the text. Emphasis is placed on the need
to think about whether a calculated error is sensible.

At first students should take this book with them to the laboratory, and the
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understanding of what is involved, should inspire confidence in the method of
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too much effort. The author’s aim is to make practical classes more enjoyable.
Students who use this book will be able to complete their calculations quickly
and confidently, leaving time to appreciate the basic physical ideas involved in
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Who can comprehend errors?
Psalms 19 : 13
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Preface

This short book is intended to be a practical guide, providing sets of
rules that will help you to analyse the data you collect in your regular
experimental sessions in the laboratory. Even more important, expla-
nations and examples are provided to help you understand the ideas
behind the formulae. Emphasis is also placed on thinking about the
answers that you obtain, and on helping you get a feeling for whether
they are sensible.

In contrast, this does not set out to be a text on statistics, and cer-
tainly not to be a complete course on the subject. Also, no attempt is
made to provide rigorous mathematical proofs of many of the required
formulae. These are important, and if required can be consulted in any
standard textbook on the subject.

I believe that it will be necessary to read this material more than
once. You really need to have understood the ideas involved before you
do your first practical; but on the other hand, it would be much easier to
absorb the material after you have actually done a couple of experiments
and grappled with problems of trying to do the analysis yourself. Thus
it is a good idea to read the book quickly, so that you at least discover
what topics are covered and where to find them again when you need
them. At this stage, you need not worry if not everything is entirely
comprehensible. Then you take the book with you into your practicals,
so that you can refer to it for help with each of your early calculations.
As you become experienced, you will need to consult it less and less.
However, it is a good idea to return to reading the whole book, this
time aiming to understand it almost completely.



xii Preface

Since data analysis is a very practical subject, the only way to become

proficient is to be involved in actually doing it. To help you achieve this,
there are a few problems at the end of each chapter. You are strongly
recommended to solve them. Omitting them is analogous to trying to
learn to swim by reading a book on the subject without ever getting into
the water.

This book is a slightly extended version of a short series of lectures I
have been giving to first year Oxford Physics students. The material for
these lectures was based on experience I have gained over several years
by supervising and marking the weekly practical work of undergradu-
ates here. It is clear that calculating the accuracy of an experimental
result often becomes the most difficult part of the assignment. Many
students regard the necessary calculations as obscure and complicated.
The aim of this book is to dispel these ideas, to make it clear what the
correct procedure is, to help you avoid excessively long calculations and
to enable you to realise when your calculations have yielded ridiculous
answers.

I hope that this book will be a useful companion that will assist you
with your error calculations and data analysis, and to stop them being a

chore. In this way, you should be able to enjoy your practical work, and
to devote your energy to understanding the basic physical ideas involved.

I am grateful to the Numerical Algorithms Group (NAG) for permis-
sion to use routines from their program library for producing the Tables
in Appendices 6 and 7.

Louis Lyons
Oxford, 1991



Glossary and Conventions

/I = true mean of a distribution (or of a large population)
Z = estimated mean for a sample
g2  = true variance of a distribution (or of a large population)
S2 = variance as estimated from the spread of observations in a sample
u2  = variance of the estimated mean

Experimental results are usually quoted in the form y f E. The es-
timate y is said to be unbiassed provided that, were we to repeat our
experiment N times, the average of the y values for the whole set of
measurements would tend to the true (but generally unknown) value
yc as N becomes larger and larger. The quantity E  is our estimate of
the standard deviation (RMS deviation from the mean) of the distri-
bution of results that we would expect if we repeated the experiment
with similar apparatus many times. We refer to E  as ‘the error’ on the
result. Occasionally results are given in the form y f E  f δ. Here E  is
the contribution from the random (or statistical) error, and δ  that from
systematic effects.

For a result like 20411  cm, we refer to the 1 cm as the ‘absolute error’,
while the ‘fractional error’ is 1/20 = 5%.

The average of y is denoted by ji  or <y> .
The sign C means that we have to perform a summation. Thus

N

x Yi = yl +j.&+“‘+yN.
i=l

Then the average g = C yi/N.
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Experimental errors

1.1 Why estimate errors?

When performing experiments at school, we usually considered that the
job was over once we obtained a numerical value for the quantity we
were trying to measure. At university, and even more so in everyday
situations in the laboratory, we are concerned not only with the answer
but also with its accuracy. This accuracy is expressed by quoting an
experimental error on the quantity of interest. Thus a determination of
the acceleration due to gravity in our laboratory might yield an answer

g = (9.70 f 0.15) m/s2.

In Section 1.4, we will say more specifically what we mean by the error
of 310.15.  At this stage it is sufficient to state that the more accurate the
experiment the smaller the error; and that the numerical value of the
error gives an indication of how far from the true answer this particular
experiment may be.

The reason we are so insistent on every measurement including an
error estimate is as follows. Scientists are rarely interested in measure-
ment for its own sake, but more often will use it to test a theory, to
compare with other experiments measuring the same quantity, to use
this parameter to help predict the result of a different experiment, and
so on. Then the numerical value of the error becomes crucial in the
interpretation of the result.

For example, maybe we measured the acceleration due to gravity in
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order to compare it with the value of 9.81 m/s2,*  measured in another
laboratory a few miles away last year. We could be doing this in order to
see whether there had been some dramatic change in the gravitational
constant G over the intervening period; to try to detect a large gold mine
which could affect the gravitational field in our neighbourhood; to find
out if the earth had stopped spinning (although there are easier ways
of doing this); to discover the existence of a new force in nature which
could make the period of a pendulum depend on the local topography,
etc.

With a measurement of 9.70 m/s2,  do we have evidence for a discrep-
ancy? There are essentially three possibilities.

Possibility 1  
+If as suggested above the experimental error is -0.15, then our determi-

nation looks satisfactorily in agreement with the expected value,

i.e. 9.70 f 0.15 is consistent with 9.81.

Possibility 2
If we had performed a much more accurate experiment and had suc-
ceeded in reducing the experimental error to f0.01,  then our measure-
ment is inconsistent with the previous value. Hence, we should worry
whether our experimental result and/or the error estimate are wrong.
Alternatively, we may have made a world shattering discovery.

i.e. 9.70 f 0.01 is inconsistent with 9.81.

Possibility 3
If we had been stupid enough to time only one swing of the pendulum,
then the error on g could have been as large as f5.  Our result is now
consistent with expectation, but the accuracy is so low that it would be
incapable of detecting even quite significant differences.

i.e. 9.70 f 5 is consistent with 9.81,
and with many other values too.

Thus for a given result of our experiment, our reaction - ‘Our measure-
ment is in good shape’ OR ‘We have made a world shattering discovery’
OR ‘We should find out how to do better experiments’ - depends on the

* Since this is an experimental number, it too has an uncertainty, but
we assume that it has been measured so well that we can effectively
forget about it here.
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numerical estimate of the accuracy of our experiment. Conversely, if we
know only that the result of the experiment is that the value of g was
determined as 9.70 m/s2  (but do not know the value of the experimental
error), then we are completely unable to judge the significance of this
result.

The moral is clear. Whenever you determine a parameter, estimate
the error or your experiment is useless.

A similar remark applies to ‘null measurements’. These occur in sit-
uations where you investigate whether changing the conditions of an
experiment affects its result. For example, if you increase the amplitude
of swing of your pendulum, does the period change? If, to the accuracy
with which you can make measurements, you see no effect, it is tempting
to record that ‘No change was seen’. However this in itself is not a help-
ful statement. It may become important at some later stage to know
whether the period was constant to within 1%, or perhaps within 1 part
in a million. Thus, for example, the period is expected to depend slightly
on the amplitude of swing, and we may be interested to know whether
our observations are consistent with the expected change. Alternatively
we may need to know how accurate the pendulum is as a clock, given
that its amplitude is sometimes 10°  and at others 5° . With simply the
statement ‘No change was seen’, we have no idea at all of what magni-
tude of variation of the period could be ruled out. It is thus essential in
these situations to give an idea of the maximum change that we would
have been capable of detecting. This could consist of a statement like
‘No change was observed; the maximum possible change in period was
less than 1 part in 300’.

It is worth remembering that null measurements, with sufficiently
good limits on the possible change, have sometimes led to real progress.
Thus, at the end of the last century, Michelson and Morley performed an
experiment to measure the speed of the earth through the hypothesised
aether.  This would have produced shifts in the optical interference fringe
pattern produced in their apparatus. They observed no such shift, and
the limit they were able to place on the effect was sufficiently stringent
that the idea of the aether  was discarded. The absence of an aether  was
one of the cornerstones on which Einstein’s Special Theory of Relativity
was built.

Thus ‘null observations’ can be far from useless, provided you specify
what the maximum possible value of the effect could have been.
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1.2 Random and systematic errors
1.2.1 What they are

There are two fundamentally different sorts of errors associated with any
measurement procedure, namely random (or statistical) and systematic
errors. Random errors come from the inability of any measuring device
(and the scientist using it) to give infinitely accurate answers.* Another
source of random errors is the fluctuations that occur in observations on
a small sample drawn from a large population. On the other hand,  sys-

tematic errors result in measurements that for one reason or another are
simply wrong. Thus when we make a series of repeated measurements,
the effect of random errors is to produce a spread of answers scattered
around the true value. In contrast, systematic errors can cause the mea-
surements to be offset from the correct value, even though the individual
results can be consistent with each other. (See Fig. 1.1.)

Thus, for example, suppose someone asks you the exact time. You
look at  your watch,  which has only hour and minute hands,  but no
second hand. So when you try to estimate the time, you will have a
random error of something of the order of a minute.  You certainly
would have extreme difficulty trying to be precise to the nearest second.
In addition to this random error, there may well be systematic errors too.
For example, your watch may be running slow, so that it is wrong by an
amount that you are not aware of but may in fact be 10 minutes. Again,
you may recently have come back home to England from Switzerland,
and forgotten to reset your watch, so that it is out by 1 hour. As is
apparent from this example, the random error is easier to estimate, but
there is the danger that if you are not careful you may be completely
unaware of the more important systematic effects.

As a more laboratory oriented example, we now consider an exper-
iment designed to measure the value of an unknown resistor,  whose
resistance Rz is determined as

R _ v2  - K
2-

VI
RI (1.1)

(see Fig. 1.2). Thus we have to measure the voltages VI and Vz, and the

* Except possibly for the situation where we are measuring something
that is integral (e.g., the number of cosmic rays passing through a
small detector during one minute). See, however, the next sentence
of the text, and  the remarks about Poisson distributions in Section
1.2.2.
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Fig. 1.1. Random and systematic errors. The figures show the
results of repeated measurements of some quantity 1:  whose true
value is shown by the arrows. The effect of random errors is to
produce a spread of measurements, centred on z.  (see (a)). On
the other hand, systematic effects (b) can shift the results, while
not necessarily producing a spread. Finally, the effect of random
and systematic errors, shown in (c), is to produce a distribution of

answers, centred away from zo.

other resistance RI. The random errors are those associated with the
measurements of these quantities.
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Fig. 1.2.  Circuit for determining an unknown resistance R2 in terms
of a known one RI  and the two voltages VI and Vz.

The most obvious sources of systematic errors are the following.

(i)

(ii)

(iii)

(iv)

(v)

(vi)

The meters or oscilloscopes that we are using to measure VI  and V2
may be incorrectly calibrated. How this affects the answer depends
on whether the same device is used to measure the two voltages.
(See section 1.8.)
The meter used to measure the resistor Ri may similarly be in
error.
If our voltage source were AC, then stray capacitances and/or in-
ductances could affect our answer.
The resistors may be temperature dependent, and our measure-
ment may be made under conditions which differ from those for
which we are interested in the answer.
The impedances of the voltmeters may not be large enough for
the validity of the approximation that the currents through the
resistors are the same.
Electrical pick-up could affect the readings of the voltmeters.

Systematic errors can thus arise on any of the actual measurements
that are required in order to calculate the final answer (e.g. points (i) and
(ii) above). Alternatively, they can be due to more indirect causes; thus
effects (iii)-(vi) are produced not by our instruments being incorrect,
but more by the fact that we are not measuring exactly what we are
supposed to.

In other situations it might be that there are implicit assumptions in
the derivation of the equation on which we are relying for obtaining our
answer. For example, the period of a pendulum of length l is 27rfi
only if the amplitude of oscillations is small, if we can neglect air resis-
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tance,  if the top of the pendulum is rigidly secured, etc. If these are not
true, then our experiment has a systematic error. Whether such effects
are significant or not depends on their magnitude compared with those
of the random errors.

1.2.2 Estimating random errors

A recurring theme in this book is the necessity of providing error es-
timates on any measured quantity. Because of their nature, random
errors will make themselves apparent by producing somewhat different
values of the measured parameter in a series of repeated measurements.
The estimated accuracy of the parameter can then be obtained from the
spread in measured values as described in Section 1.4.

An alternative method of estimating the accuracy of the answer exists
in cases where the spread of measurements arises because of the limited
accuracy of measuring devices. The estimates of the uncertainties of such
individual measurements can be combined as explained in Section 1.7 in
order to derive the uncertainty of the final calculated parameter. This
approach can be used in situations where a repeated set of measurements
is not available for the method described in the previous paragraph. In
cases where both approaches can be used, they should of course yield
consistent answers.

The accuracy of our measurements will in general play little part in
determining the accuracy of the final parameter in those situations in
which the measurements are made on a population which exhibits its
own natural spread of values. For example, the heights of ten-year-old
children are scattered by an amount which is larger than the uncertainty
with which the height of any single child can be measured, It is then this
scatter and the sample size which determine the accuracy of the answer.

A similar situation arises where the observation consists in counting
independent random events in a given interval. The spread of values
will usually be larger than the accuracy of counting (which may well be
exact); for an expected number of observations n, the spread is fi.  This
can be derived from the properties of the Poisson distribution, which is
discussed in Appendix 4.

Another example is provided by the measurement of the mean lifetime
τ of a radioactive element. This we can do by finding the average of the
observed decay times of a sample of the disintegrations. The nature of
radioactivity is such that not all decays occur at the identical time τ, 
but in fact a large number would follow an exponential distribution (see
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Set 1

Set 2 I | | | |  I  I I I I

Fig. 1.3. An exponential N  = NO  e--t/T,  for the expected distri-
bution of decay times t of radioactive disintegrations of a source
of mean lifetime τ. The bars below the t axis give two possible
sets of observed decay times in experiments where each detected
ten decays. The means of these times for the two samples are 0.68τ
and 0.96τ. They differ from τ because of the statistical fluctuations

Experimental errors

τ 2τ 3τ 4τt-w 

associated with small samples.

Fig. 1.3). Thus the observed times for a small number of decays could
fluctuate significantly if we repeated the experiment. This variation is
a random effect, and is not connected with the accuracy with which we
can measure individual decay times, which could be very much better
than τ .  

1.2.3 Worrying about systematic errors

For systematic errors, the ‘repeated measurement’ approach will not
work; if our ohmeter  is reading in kilohms while we think it is in ohms,
the resistance will come out too small by a factor of ~1000 each time
we repeat the experiment, and yet everything will look consistent.

Ideally, of course, all systematic effects should be absent. But if it
is thought that such a distortion may be present, then at least some
attempt can be made to estimate its importance and to correct for it.
Thus if we suspect a systematic error on the ohmeter, we can check it by
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measuring some known resistors. Alternatively, if we are worried that
the amplitude of our pendulum is too large, we can measure the period
for different initial displacements, and then extrapolate our answer to
the limit of a very small amplitude. In effect, we are then converting
what was previously a systematic error into what is hopefully only a

random one.
One possible check that can sometimes be helpful is to use constraints

that may be relevant to the particular problem. For example, we may
want to know whether a certain protractor has been correctly calibrated.
One possible test is to use this protractor to measure the sum of the
angles of a triangle. If our answer differs significantly from 180°,  our
protractor may be in error.

In general, there are no simple rules or prescriptions for eliminating
systematic errors. To a large extent it requires common sense plus ex-
perience to know what are the possible dangerous  sources of errors of
this type.

Random errors are usually more amenable to methodical study, and
the rest of this chapter is largely devoted to them. Nevertheless, it is
important to remember that in many situations the accuracy of a mea-
surement is dominated by the possible systematic error of the instru-
ment, rather than by the precision with which you can actually make
the reading.

Finally we assert that a good experimentalist is one who minimises
and realistically estimates the random errors of his apparatus,  while
reducing the effect of systematic errors to a much smaller level.

1.3 Distributions

In Section 1.6 we are going to consider in more detail what is meant

by the error σ  on a measurement. However, since this is related to the
concept of the spread of values obtained from a set of repeated measure-
ments, whose distribution will often resemble a Gaussian (or normal)
distribution, we will first have three mathematical digressions into the

subjects of (a) distributions in general, (b) the mean and variance of a
distribution, and (c) the Gaussian distribution.

A distribution n(x) will describe how often a value of the variable

x occurs in a defined sample. The variable x  could be continuous or
discrete, and its values could be confined to a finite range (e.g. 0-1) or
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Table 1.1. Examples of distributions

Character Limits x variable

l--too Integer x No. of times you have
produced a completely
debugged computer
program after x
compilations

Discrete l--t7 Day of week No. of marriages on
day x

-13.6  eV  + 0  Energies of ground No. of atoms with
and excited states electrons in state of
of hydrogen atoms energy  x  in atomic

hydrogen at 30000° 

Continuous

-00~00 Measured value of No. of times measure- 
parameter ment x is observed

O--,00 Time it takes to No. of readers taking
solve all problems time x 
in this book

0 + 24 hours Hours sleep each No. of people sleeping
night for time x

could extend to foe  (or could occupy a semi-infinite range, e.g. positive
values only). Some examples are given in Table 1.1. 

As an example, Fig. 1.4 shows possible distributions of a continuous
variable, the height h of 30-year-old men. If only a few values are avail-
able, the data can be presented by marking a bar along the h axis for
each measurement (see Fig. 1.4(a)). In Fig. 1.4(b), the same data is
shown as a histogram, where a fairly wide bin size for h is used and the
vertical axis is labelled  as n, the number of observations per centimetre
interval of h, despite the fact that the bin size ∆h used is 10 cm. The
actual number of men corresponding to a given bin is n∆h,  and the total
number of men appearing in the histogram is C n∆h.  If 100 times more
measurements were available, the number of entries in each bin of the
histogram would increase by a large factor (Fig. 1.4(c)), but it would
now become sensible to draw the histogram with smaller bins, in order
to display the shape of the distribution with better resolution. Because
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n

1'2- (b)

0.8-

(a)

I I I I I I Ill1

3
I I II I

1.4 
I

1.6 2.0

1.4 1.6 1.8 2.0
h-

Fig. 1.4. Some examples of distributions of, say, the heights h (in
metres) of 30-year-old men. (a) With only a few observations, each
one is represented as a bar at the relevant position along the h axis.
(b) The data of (a) could alternatively be drawn as a histogram,
where n is the number of men per centimetre interval of h, even
though the bin size in h is 10 cm. (c) A histogram as in (b), but with
100 times more observations. (d) The same data as in (c), but drawn
with smaller bins of h. n is still the number of men per centimetre
interval of h. (e) For an even larger number of observations and
with smaller bin size, the histogram of (d) approaches a continuous

distribution.

we plot n(h) as the number of observations per centimetre, irrespective
of bin size, the overall height of the histogram does not change much
when we change the bin size (see Fig. 1.4(d)). Finally, for an even larger
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number of observations, we could make the bin size so small that the
histogram would approximate to a continuous curve (see Fig. 1.4(e));
this could alternatively be viewed as a very good theoretical prediction
about the numbers of men of different heights. Again n(h) is to be in-
terpreted in the same way, but now the total number of men appearing
in the histogram is Jn(h)dh.

Another example of a distribution for a continuous variable has al-
ready been shown in Fig. 1.3, where the variable was denoted by t  rather
than h.

1.4 Mean and variance

In order to provide some simple description of a distribution such as
shown in Fig. 1.4 or 1.5, we need measures of the value at which the
distribution is centred, and how wide the distribution is. The mean /I
and the mean square deviation from the mean g2 (also known as the
variance) are suitable for this. Thus (T  is the RMS (root mean square)
deviation from the mean, and is also known as the ‘standard deviation’
of the distribution.

The quantities /I and a2  refer to the true values for the distribution,
and are the estimates that we would obtain  for the completely imprac-
tical case of an infinite number of unbiassed observations. For a finite
set of N separate observations such as shown in Fig. 1.4(a), estimates
of p and a2 are respectively

and

2=
Elxi N (1.2)

52 =
‘T;7( xi - /A)~/N. (1.3)

where the C signs mean that we must add up the specified variables
for all the N members of the distribution. In general, the true mean p
is not known, and so eqn (1.3) cannot in fact be used to estimate the
variance. Instead it is replaced by

s2 = & E(Xi  - q2, (1.3')

where the factor 1/(N - 1) is required in order to make s2  an unbiassed
estimator of the variance (as can be proved fairly readily). This means
that, if we repeat our procedure of taking samples lots and lots of times
(say L times in all), then we expect that the average of s2  from all these
samples gets closer and closer to the correct value (r2  as L increases.
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Fig. 1.5.  A histogram of a distribution in x. m  is the number of
entries in each x  bin; there are 66 entries in all. The mean 5 and
the variance s2 are estimated as 5.9 and (2.05)2  respectively. The
accuracy  u  to which the mean 2 is determined is smaller than s  by

a factor of a.

This would not be true if we used a factor of 1/N instead of 1/(N  - 1).
Another consequence of the 1/(N - 1) is that one measurement of a
quantity does not allow us to estimate the spread in values, if the ‘true’
value is not known.

Even if we accept the need for the 1/(N -  1),  the definition (1.3')
for s2  still looks unnecessarily complicated. Since the deviation of an
individual measurement from the estimated mean is (xi - Z), we might
have thought that y = C(zi  - Z)/(N  - 1) would have given a simpler
estimate of the width of the distribution. The trouble with this is that
the definition of 5 is such that C(zi  - $) is guaranteed to be zero,
and so y is useless as an estimate of anything. We could instead have
used C IQ - Zl/(N  -  1),  but the modulus sign is rather messy from a
mathematical viewpoint, so the definition (1.3') is adopted.

It is most important to realise that s is the measure of how spread
out the distribution is, and is not the accuracy to which the mean 2 is
determined. This is known to an accuracy better by a factor of a.
Thus by taking more and more observations of 2, the variance s2  will not
change (apart from fluctuations) since the numerator and denominator
of eqn (1.3) or (1.3') grow more or less proportionally; this is sensible
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since s2  is supposed to be an estimate of the variance of the overall
population, which is clearly independent of the sample size N. On the
other hand, the variance of the mean (s2/N)  decreases with increasing
N; more data help locate the mean to better accuracy. (We return to
this point, and explain the origin of the 1/N factor, in Section 1.7.1).

In some experiments, we make a few measurements of the quantity
we are interested in, and take their average. The accuracy with which
we determine this is then given by the error on the mean.

It seems as if we have discovered a simple technique for obtaining
an accurate answer from an inferior experiment: all we have to do is
to take more and more measurements, and the error on the mean goes
down. There are two considerations against this. First the improvement
in accuracy is given by l/a, and is slow; to reduce the error by a
factor of 10 requires 100 measurements, and a factor of 1000 needs a
million repetitions, which in most circumstances is completely impracti-
cal. Secondly, it is true that, provided nothing significant changes during
the course of this tedious procedure, the statistical error on the mean
does decrease as specified. However, all experiments are in danger of
having systematic errors as well as random ones. In a well-designed ex-
periment, the systematic error is usually smaller than the random one.
Now a repeated set of measurements reduces the statistical error but
not the systematic one.* Thus as N increases we reach the point where
the systematic error dominates the random error on the mean, and then
further repetition of the measurements is of little value. Similarly un-
detected systematic errors can produce a bias, which again will usually
not decrease as the number of measurements increases.

Sometimes the measurements are grouped together so that at the value
~j there are mj  observations (equivalent to njAh  in Fig. 1.4(d)). Then
simple extensions of eqns (1.2) and (1.3') are

5 = C?TljXj/C?TJj (1.4)
and

S2  = Cmj(Xj  - Z)2/(C7?lj  - 1). (1.5)

where the summation now runs over the j bins of the grouped histogram.
As usual, s2 is our estimate of the variance of the distribution; the
variance u2  on the mean is s2/  C mj (see Fig. 1.5).

* Of course, with extra data, it may be possible to look at potential
systematic effects, and to discover how to reduce the error from these
sources too, but that would require a lot more thought and work.
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For continuous distributions (see, for example Fig. 1.4(e)), these be-
come

and

jj:= Jn(x)xdx/N (1.6)

where

52 =
J44 t x -  ig2dx/N,

N =
s

n(x)dx,

(1.7)

and where the usual N - 1 factor in s2 has been replaced by N which is
assumed to be large for this case.

A minor computational point is worth noting. Eqn (1.3') can be
written

where 22 is defined in analogy with eqn (1.2) as

22 = xxf/N.

Thus if someone were reading out the data to you (or if you were
accepting the data on a computer), it is not necessary for this to be
done twice, first for you to calculate 5, and then to obtain s2  from eqn
(1.3'). Instead 22 and 1:  can be calculated in a single pass over the
data, and then s2  calculated from eqn (1.8) at the end. If your pocket
calculator has the ability to compute standard deviations, it is likely
that it does it this way.

However, in using eqn (1.8) for cases where s2  is small compared with
22 and z2, it is vital to keep enough significant figures in the numerical
calculation, or the obtained value of s2 can be meaningless. The x values
of 9500, 9501 and 9502 provide an example of this.

A final but important point is that, if we attempt to determine the
width of a distribution from only a few measurements, our estimate s2
from eqn (1.3') will not be very accurate. This is because the particular
small sample that we take may have the individual measurements ac-
cidentally closer together than might have been expected, or they may
be unusually far apart; as the sample size increases, such effects become
less likely. In fact, for a set of results that are Gaussian distributed, the
fractional error on s is l/d=.  Thus, for example, with 9 measure-
ments our error estimate is known to only 25%, and there is no sense in
quoting more than one significant figure. (See Problem 1.10).
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x-

Fig. 1.6. The solid curve is the Gaussian distribution of eqn (1.10).
The distribution peaks at the mean p, and its width is characterised
by the parameter 0. The dashed curve is another Gaussian distri-
bution with the same value of p, but with u twice as large as the
solid curve. Because the normalisation condition (1.11) ensures that
the areas under the curves are the same, the height of the dashed
curve is only half that of the solid curve at the maxima. The scale

on the z axis refers to the solid curve.

1.5 Gaussian distribution

As the Gaussian distribution is of such fundamental importance in the
treatment of errors, we now consider some of its properties.

The general form of the Gaussian distribution in one variable z is

y=& exp{-(a: - p)2/2c2} (1.10)

The curve of y as a function of x is symmetric about the value of x = /J,
at which point y has its maximum value. (See Fig. 1.6.) The parameter
u characterises the width of the distribution, while the factor (&a)-’
ensures that the distribution is normalised to have unit area underneath
the whole curve, i.e.

J

+C=
ydx  =  1. (1.11)

-CQ
The parameter p is the mean of the distribution, while 0 has the

following properties.

(i) The mean square deviation of the distribution from its mean is a2.
(This is the reason that the curious factor of 2 appears within the
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exponent in eqn (1.10). Otherwise the root mean square deviation
from the mean would have been a/&!,  which is unaesthetic.)

(ii) The height of the curve at x = /I f (T  is l/fi  of the maximum
value. Since

l/A = 0.607,

(T  is very roughly the half width at half height of the distribution.
(iii) The fractional area underneath the curve and with

P -U<X<p+U (1.12)

(i.e. within fa of the mean cl)  is 0.68.
(iv) The height of the distribution at its maximum is (&a)-‘.  As CT

decreases the distribution becomes narrower, and hence, to main-
tain the normalisation condition eqn (1.11),  also higher at the peak.

By a suitable change of variable to

2’ = (x - /4)/a (1.13)

any normal distribution can be transformed into a standardised form

 Lexp( -x12/2),y-&f
with mean zero and unit variance.

A feature which helps to make the Gaussian distribution of such
widespread relevance is the Central Limit Theorem. One statement of
this is as follows. Consider a set of n independent variables xi,  taken
at random from a population with mean /-1  and variance u2,  and then
calculate the mean Z of these n values. If we repeat this procedure many
times, since the individual xi are random, then z itself will have some
distribution. The surprising fact is that, for large n, the distribution of
5 tends to a Gaussian (of mean p and variance a2/n).  The distribution
of the x; themselves is irrelevant. The only important feature is that the
variance a2 should be finite. If the xi are already Gaussian distributed,
then 5 is also Gaussian for all values of n from 1 upwards. But even if xi
is, say, uniformly distributed over a finite range, then the sum of a few
xi will already look Gaussian. Thus whatever the initial distribution, a
linear combination of a few variables almost always approximates to a
Gaussian distribution.

An example of the Central Limit Theorem is given below in Section
1.7.1.
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1.6 The meaning of σ 

Having concluded our mathematical digressions, we now return to our
consideration of the treatment of errors.

For a large variety of situations, the result of repeating an experiment
many times produces a spread of answers whose distribution is approxi-
mately Gaussian; the approximation is likely to be good especially if the
individual errors that contribute to the final answer are small. When
this is true, it is meaningless to speak of a ‘maximum possible error’ of a
given experiment since the curve in Fig. 1.6 remains non-zero for all val-
ues of x; the ‘maximum possible error’ would be infinite, and although
this would make it easy to calculate the ‘error’ on any experiment, it
would not distinguish a precision experiment from an inaccurate one.

It is thus customary to quote 0 as the accuracy of a measurement.
Since 0 is not the maximum possible error, we should not get too up-
set if our measurement is more than Q away from the expected value.
Indeed, we should expect this to happen with about i of our experi-
mental results. Since, however, the fractional areas beyond f2a  and
beyond f3a  are only 5% and 0.3% respectively, we should expect such
deviations to occur much less frequently.

The properties of Gaussian distributions are commonly used in inter-
preting the significance of experimental results. This is illustrated by
the following example.

We measure the lifetime of the neutron in an experiment as 950 f 20
seconds. A certain theory predicts that the lifetime is 910 s. To what
extent are these numbers in agreement?

We consult Fig. 1.7, which is a graph showing the fractional area under
the Gaussian curve with

  | f | > r,

where

(1.15)

i.e. it gives (on the right hand vertical scale) the area in the tails of the
Gaussian beyond any value r  of the parameter f,  which is plotted on
the horizontal axis. In our example of the neutron lifetime, f  = 2 and
the corresponding probability is 4.6%. Thus if 1000 experiments of the
same precision as ours were performed to measure the neutron lifetime,
and if our theory is correct, and if the experiments are bias-free, then we
expect about 46 of them to differ from the predicted value by at least
as much as ours does. Of course, we still have to make up our mind
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f
P(f > r)

t
(|f|>r)

I
1

0.02

r ->

Fig. 1.7. The fractional area in the tails of a Gaussian distribu-
tion, i.e. the area with f greater than some specified value r, where
f is the distance from the mean, measured in units of the stan-
dard deviation. The scale on the left hand vertical axis refers to
the one-sided tail, while the right hand one is for | f | larger than
r. Thus for r = 0, the probabilities are 3 and 1 respectively.

whether we regard the theory (and the experiment) as satisfactory or
not, but at least we have a number on which to base our judgement.

In order to rely on the numerical value of this probability, it is essential
to ensure that the following assumptions are satisfied.

(i) The value of the quantity of interest has been correctly calculated
(e.g. there are no important systematic biasses).

(ii) The magnitude of the error has been correctly calculated. This
is particularly important, in that an incorrect estimate of the ac-
curacy of the experiment could have a very large effect on the
calculated significance of our result and hence on our conclusions.
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(iii)

(See also the remarks below about estimates of σ.) For example,
let us assume that the result of an experiment is such that, with
the correctly estimated error u, it differs from the expected value
by 20. A random deviation of this magnitude or larger is expected
in ~5 % of experiments, and hence is not too rare. On the other
hand, if we underestimate the error by a factor of 2, we now have a
(spurious) four standard deviation effect, whose probability is only
6. 10V5  i.e. such an effect ‘cannot’ happen if the theory is correct.
The form of the experimental resolution is such that the Gaus-
sian approximation is reasonable. This is usually not exactly true,
in that the actual probability of obtaining large deviations (above
~ 30) from the correct value is often underestimated by the Gaus-
sian distribution. This effect is also likely to result in an artificial
enhancement of our estimation of the significance of observed de-
viations.

It is important to realise that u in eqn (1.16) is supposed to be the true
value of the experimental error. If instead all we have is an estimate for
c based on the spread of observations, then the appropriate distribution
for f is not Gaussian, but that of Student’s t (see Appendix 5).

In most cases, the theoretical estimate yth will have an uncertainty
u’ associated with it; theory, after all, is based on experiment, and
hence predictions in general are calculated from other measured quan-
tities which of course have their own experimental errors. In that case,
we repeat the above procedure of consulting Fig. 1.7, but we redefine f
for this case as

f = ;-p$> (1.17)

where our measured value is yobs  f Q. The denominator of (1.17) arises
because it is the error on the numerator, assuming that the errors on

YOb3 and yth are uncorrelated (see Section 1.7.1).
Sometimes we are interested in the sign of possible deviations from

predicted values.

Example (i)
Is there any evidence for other processes, which we have not allowed for
in our theory, contributing to the neutron decay? In other words, is the
observed lifetime for neutron decay smaller than the predicted value?

Example (ii)
A motorist is accused of speeding by a policeman, who claims that he
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measured the speed as 38 miles per hour (mph) in an area where the
limit was 30 mph. The accuracy of the method used, however, was
only f5 mph. The relevant question is thus how likely is it that the
driver’s speed was actually 30 mph or less, given the measurement and
its accuracy.

In cases where the sign of the possible deviation is of significance, we
use the left hand scale of Fig. 1.7, which gives the area of the Gaussian
with  f  > r (or, by symmetry, with f  < -r),  i.e. it is the area in one of
the tails.

Fig. 1.7 shows that not only are measurements unlikely to deviate
from the correct value by more than a few standard deviations, but also
they should not often agree to better than a small fraction of the error.
For example, if we measure the neutron lifetime as 909 f 200 s, we are
suspiciously close to the prediction of 910 s. From Fig. 1.7 it can be seen
(in principle rather than in practice since the scales are not optimal for
very small values of f )  that the probability of being within & of a
standard deviation from a specific value is only 0.4%. Thus

(i) we are unusually lucky on this occasion; or
(ii) our error is over-estimated; or
(iii) we in fact knew the predicted value before we started the exper-

iment, and (perhaps unconsciously) adjusted our measurement to
get close to the ‘right’ answer.

The discussion in this section has been an example of what is known
as ‘Hypothesis Testing’. We return to a more detailed discussion of this
subject in Chapter 2.

1.7 Combining errors

We are frequently confronted with a situation where the result of an
experiment is given in terms of two (or more) measurements. Then we
want to know what is the error on the final answer in terms of the errors
on the individual measurements. We first consider in detail the case
where the answer is a linear combination of the measurements. Then we
go on to consider products and quotients, and finally we deal with the
general case.
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1.7.1 Linear situations

As a very simple illustration, consider

a = b - c . (1.18)

To find the error on a, we first differentiate

δa = δb - δc.     (1.19)

If we were talking about maximum possible errors, then we would simply
add the magnitudes of δb  and δc to get the maximum possible δa.  But
we have already decided that it is more sensible to consider the root
mean square deviations. Then, provided that the errors on b and c are
uncorrelated,* the rule is that we add the contributions δb  and -δc in
quadrature:

(1.20)

Two points are worth noting.

(i) If in a particular experiment we know that the measurements of
b and  c  were incorrect by specific amounts δb  and  δc,  then the
answer would be incorrect by an amount δa,  given in terms of δb 
and δc by eqn (1.19). But the whole point is that in any given
measurement we do not know the exact values of δb  and  δc  (or
else we would simply correct for them, and get the answer for a
exactly), but only know their mean square values cr2 over a series
of measurements. It is for these statistical errors that eqn (1.20)
applies.

(ii) For linear combinations like eqn (1.18), it is the errors themselves
which occur in eqn (1.20); percentage errors, which are useful for
products (see Section 1.7.2) are here completely irrelevant. Thus
if you wish to determine your height by making independent mea-
surements of the distances of your head and your feet from the
centre of the earth, each to 1% accuracy, the final answer will not
in general be within 1% of the correct answer; in fact, you may
well get a result of -40 miles for your height.

Next we discuss why we use quadrature for combining these statistical
errors. We look at this in several ways.

(a) Mnemonic non-proof
The errors on b and on -c can be ‘in phase’ with each other to give

* The meaning of ‘uncorrelated’ becomes clearer later in this section.
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Fig. 1.8. Diagram illustrating the non-proof of formula (1.20). In
(a) the contributions from δb  and from -δc are ‘in phase’, in (b)
they are ‘out of phase’, while in (c) they appear to be in quadrature.

(a) (b) (c)

Fig. 1.9. The crosses represent the values of δb and δc for a repeated
series of measurements. In (a), these errors are strongly correlated,
with ((~;~)(cz-z)) - known as the covariance - being large and posi-
tive. The correlation in (b) is less pronounced and slightly negative.
In (c) there is almost no correlation, and the covariance is almost

zero.

contributions which add up in δa;  or they can be ‘out of phase’, so that
they partially cancel in δa.  So perhaps on average they are ‘orthogo-
nal’ to each other and hence Pythagoras’ Theorem should be used for
obtaining ai.  (See Fig. 1.8.)

We stress that this is not a proof; in particular there is no obvious
second dimension in which δb  and  δc  can achieve orthogonality.

(b) Formal proof
a; = <[a - a]2)

= <[(b - c) - (b - z)12)

= <(b - b)2) + <(c - z)2) - 2((b - h)(c - c)). (1.21)

In the above line, the first two terms are ai and uz  respectively. The
last term depends on whether the errors on b and c are correlated. In
most situations that we shall be considering, such correlations are absent.
In that case, whether b is measured as being above or below its average
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value 8 is independent of whether c is larger than or less than C. The
result of this is that the term (b - b)(c - C)  will average to zero. (See
Fig. 1.9.) Thus for uncorrelated errors of b  and c, eqn (1.21) reduces to
eqn (1.20).

(c) The infinitesimal probability argument
We perform an experiment which consists of tossing an unbiassed coin
100 times. We score 0 for each heads and 2 for each tails (i.e. the
expectation is 1 f 1 each time we toss the coin). For the complete
experiment, we expect on average to score 100. However other scores
are possible, including even 0 or 200, so if we were interested in the
maximum possible error, this would be f100.  But the probability of
obtaining all heads is only (1/2)100  ( an similarly for tails). Thus if wed
had a team of helpers such that the experiment could be repeated once
every second, we would expect to score 0 or 200 once every ~ 1O22  years.
Since the age of the earth is less than 1Oro  years, we can reasonably
discount the possibility of extreme scores, and thus consider instead
what are the likely results.

The expected distribution for the final score follows the binomial dis-
tribution (see Appendix 3). For 100 tosses, this is very like the Gaussian
distribution, with mean 100 and CT ~ 10. We thus have an example of
the Central Limit Theorem mentioned in Section 1.5; by combining a
large number N of variables, we end up with something very similar to
a Gaussian distribution,* the width of which increases only like fi.

(d) Averaging is good for you
We know intuitively that it is better to take the average of several in-
dependent measurements of a single quantity than just to make do with
a single observation. This follows from the correct formula (1.20), but
not from simply adding the errors.

The average g of n measurements qi  each of accuracy u is given by

nq = cqi. (1.22)
i

Then using (1.20) we deduce that the statistical error u on the mean

* Provided, of course, that we don’t look at it with too great a resolu-
tion, since this distribution is defined only for integral values, whereas
the Gaussian is continuous.
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is given by

n2u2 = c u2 =  nf12,
i

whence
u  = u/&i. (1.23)

Thus we have obtained the result quoted in Section 1.4 that the error
on the mean is known more accurately than the error characterising  the
distribution by a factor 4; this justifies our intuitive feeling that it is
useful to average.

The use of the incorrect formula analogous to (1.19) would have led
to the ridiculous result that u = 0. This would imply that the accuracy
of the mean is no better than that of a single measurement, and that
it would be a waste of effort to repeat an experiment several times in
order to determine the mean of the results.

1.7.2 Products

The next simple example is where the answer f  is given in terms of the
measurements x and y  by

f = xayb (1.24)

where the powers a and b can be positive, negative or fractional. Thus
this formula includes simple products, ratios, cubes, square roots, etc.
etc.

As in the linear situation, we are going to differentiate this formula,
but it is slightly simpler if we first take its logarithm. Then

δf  δx δy
- = a- + b-   .
f x (1.25)y

Again in analogy with our earlier example, after we square and average,
provided x and y are uncorrelated, we obtain

(1.26)

That is, the fractional error on f  is simply related to the fractional errors
on x and y. This contrasts with the linear case, where absolute errors
were relevant.

The functions
f = xy 

and f = x/y 
are so common that it is worth writing the answer explicitly for them as

(!3)‘= (y2+ (T)‘. (1.27)
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Thus a 3% error in z and a 4% error in y, assumed as usual to be
uncorrelated, would combine to give a 5% error in f. 

Because eqn (1.24) is in general not linear in z and y, eqn (1.26) will
be accurate only if the fractional errors are small.

1.7.3 The General Case

There are two approaches that can be applied for a general formula

f= f(%~2,...Jfa) (1.28)

which defines our answer f  in terms of measured quantities xi each with
its own error Ui. Again we assume the errors on the xi are uncorrelated.

In the first, we differentiate and collect the terms in each independent
variable xi.  This gives us*

Sf= -af 6x1+ w
8x1

-5x2+...+-
8x2

af 6x
ax,  n*

(1.29)

As in our earlier examples, we then square and average over a whole
series of measurements, at which point all  the cross terms like 6x1522
vanish because the different xi are uncorrelated. We finally obtain

a;=  -c( >ill  dx

af 2a2
i*

i
(1.30)

This gives us the answer al  in terms of the known measurement errors
oi. As with products and quotients, if f  is non-linear in the xi,  this
formula requires the errors Oi to be small. (See problem 1.6.)

The alternative approach is applicable for any size errors. It consists
of the following steps.

( i)  Calculate f. as the value of f  when all of the xi are set equal to
their measured values.

(ii) Calculate the n values fi,  which are defined by

fi = f(Xl,X27--*,Xi  +oi,---,Xn)7

i.e. where the ith variable is increased from its measured value by
its error.

(iii) Finally obtain uf from

(1.31)

* The curly letter d ’s in eqn (1.29) (and later in (1.34)) mean that
we should differentiate partially with respect to the relevant variable.
Appendix 2 contains a brief explanation of partial differentiation.
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i.e. we combine in quadrature all the individual deviations caused
by moving each variable (one at a time) by its error.

To the extent that the errors are small, this approach should give
the same answer as the previous one. For larger errors, the numerical
method will give more realistic estimates of the errors. Furthermore, by
moving each variable in turn both upwards and downwards by its error,
we can deduce upper and lower error estimates for f  which need not be
identical. Thus, if

f  = tan 2

and

x = 88 f 1°

we obtain

f  = 29:;;

as compared with

from using eqn (1.30).

f  = 29 f 14

When the errors are asymmetric, it is a clear indication that the dis-
tribution of f  is not Gaussian. Then we should be careful about how
we calculate the significance of being, say, two or more errors away from
some specified value.

1.8 Systematic errors

In Section 1.9, we shall consider the measurement of a resistance by the
method discussed earlier in Section 1.2. We assume that the experiment
produced the following results:

Rx = (2.0 f 0.1 kQ) f 1%,

VI = (1.00 f 0.02 volts) f 10%,

v, = (1.30 f 0.02 volts) f 10%, 1 (1.32)

where in each case the first errors are the random reading ones, and the
second are the possible systematic errors in the various meters.

Although random  and systematic errors are different in nature, we
may want the overall error estimate as a single figure, rather than
expressed separately  as above. Then we should add them in quadra-
ture, since reading and calibration errors are uncorrelated. This yields



28 Experimental errors

+ 0.1 kΩ, - - - 

-

 and + 0.10 V and + 0.13 V respectively.* When given in this
way, however, we lose the distinction between the random and system-
atic components, which is important, as we shall immediately see.

Next let us consider how accurately we know V2  - VI.  The answer
depends on whether the same voltmeter was used to measure both VI
and V2,  or whether separate meters were employed. In the latter case,
presumably there is no correlation between the two +10% errors on the
two readings, and so the linear combination

v2  - VI = (1.30 f 0.13) - (1.00 f 0.10)
= 0.30 f 0.16 V. (1.33)

In contrast, if the same meter is used, then it is clearly incorrect to
assume that the two systematic errors are uncorrelated, since if the first
measurement suffers from, say, a -7% calibration error, then so does
the second. In this situation, a &lo%  systematic uncertainty on each
measurement will produce a &lo%  systematic error on the result, i.e.

v2  - VI = [(1.30  f 0.02) - (1.00 f 0.02)]  f 10%
 0.30 f 0.03 f 10%=

= 0.30 f 0.04 V. (1.33')

It is perhaps a little surprising that for V2  - VI,  which is a linear
combination, we are considering fractional  errors. This is because the
uncertainty in the calibration is most simply expressed in terms of a
scale factor f =  1.00 f 10%. Then the true voltage Vt is given in terms
of the measured voltage V”  as

vt = V”f
and the voltage difference

v; - v; = (V2”  - V.) f .
Thus we are in fact concerned with a product, which explains why frac-
tional errors are relevant.

Alternatively, if the meter had some systematic zero error (which was
the same for V2  and VI),  its effect would exactly cancel in Vz  -  VI, and
hence its magnitude would be completely irrelevant.

Finally we consider the voltage ratio V2/Vl.  In the case where the
same meter was used for VI  and V2,  its possible scale error of &lo%
is irrelevant for Vz/Vl  as it cancels out. In fact it would not matter if

* Throughout this discussion, the magnitudes of errors are rounded to
one or two significant figures. In fact only very rarely will it be worth
quoting errors to more significant figures. (See Section 1.12).
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Table 1.2.
For two measured voltages Vi  and V2,  the table shows the effect of
(i) a random reading error al or ~2;

(ii) a common scale error;

(iii) a common zero error
on the voltage difference and the voltage ratio.

Random error Systematic error

Quantity Reading error Scale error
1Gj

Zero error
62

v, - If.1 u2 = CT; + CT; u = (V2 - V,)bj u = 0

r = V2/Vl (g"=(2)'+&>' a=0 u+$-~

we were mistaken as to whether the scale was calibrated in millivolts
or in volts; or we could read off the voltage in terms of the deflection
in centimetres of an oscilloscope beam, without even considering the
voltage sensitivity. The voltage ratio V2/Vl would not, however, be
independent of any zero error (see Table 1.2).

1.9 An example including random and systematic errors

We now work through the case of determining the error on a resistance,
whose value is calculated from eqn (1.1), with the measured values as
given in eqn (1.32). In fact, the formula for Rz  is best rewritten as

l-22  = (VJVI  - 1) Ri. (1.1')

The necessary steps in calculating the error on Rz  are then as follows.

(i) Since R2  is the product of Ri  and (I$/&  - 1),  the fractional error
on R2  is determined from the fractional errors on these quantities.

(ii) The absolute error on V2/Vl - 1 is equal to the absolute error on
v2/Vl.

(iii) The fractional error on V2/1/1 is determined from the fractional
errors on VI and Vs.

We now work through these steps in the reverse order, assuming that
the same meter is used to measure VI and V2.
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(iii) First we need the error on Vz/Vl.  Since the systematic scale error
cancels, we need consider only the random reading errors on VI
and Vz,  and hence

2  = (1.30 f 0.02)/( 1.00 f 0.02)

= (1.30 f 2%)/( 1.00 f 2%)

= 1.30 f 3%

= 1.30 f 0.03.

(ii) The value of (Vz/Vl  -  1) is 0.30 f 0.03. Thus although this is the
same absolute error as that of T/Z/VI,  its fractional error is larger.

(i) The value of Rz  is 0.60 Ifr  0.07 kS2.

Had the two voltmeters been different, the systematic effects on VI  and
V2  no longer cancel, and indeed dominate the errors on these voltages.
Thus

Then

and

V2/Vl  = (1.30 +- 10%)/(1.00 f 10%)

= 1.30 f 0.18.

1/2/Vl - 1 = 0.30 f 0.18

R2  = 0.60 f 0.36 kS2.

This is of considerably lower accuracy, because we cannot ignore the
calibration uncertainties of the voltmeters.

Instead of working through the combinations of linear functions and
of products and quotients, we could have used our derivative formula
(1.30) to obtain

a2  (R2) = (z)2g2(1/1)+  ($)2(12(V2)+  ($)2c72(R,)

(1.34)
where the partial derivatives are evaluated from the equation defining
R2  (eqn (1.1)). Again we would have to be careful about whether the
calibration errors on VI  and V2  cancelled or not.

We might wonder whether we could have obtained the error on R2
from eqn (1.1), which consists of the three factors V2  - VI, RI  and l/T/1.
The error on V2  - VI  we obtained in Section 1.8 earlier; those on RI and
VI  are known. Then why cannot we combine the three fractional errors
to obtain the fractional error on R2 ? The reason is that, regardless of
the question of whether VI  and V2  are measured by the same meter or



Combining results of different  experiments 31

not, the error on VI cannot be uncorrelated with that of V2 - VI, since
the same measurement VI occurs in both. Thus it would be incorrect to
use any of the formulae for combining errors which assume the separate
components have uncorrelated errors. This is a very important general
point: if the same measurement occurs more than once in a formula,
it is wrong to assume that they can be treated as having independent
errors. Both the previous methods of this section avoid this problem.

1.10 Combining results of different experiments

When several experiments measure the same physical quantity and give
a set of answers ai with different errors pi,  then the best estimates of a
and its accuracy CT are given by

and

l/a2  = C(l/Oi’>.

(1.35)

(1.36)

Thus each experiment is to be weighted by a factor l/$‘.  In some
sense, l/$  gives a measure of the information content of that particular
experiment. The proof of eqns (1.35) and (1.36) is left as an exercise for
the reader (see problem 2.1).

We now give some examples of the use of these formulae.

Example (i)
The simplest case is when all the errors oi  are equal. Then the best
combined value a from eqn (1.35) becomes the ordinary average of the
individual measurements ai,  and the error cs  on a is ai/fi,  where N is
the number of measurements. This is all very sensible.

Now there is an entirely different way of estimating the error on the
average of the set of results. This consists of simply using the spread
of the separate determinations to calculate s (their root mean square
deviation from the mean - see eqn (1.3')),  and then the required error
is s/D.  While this approach ignores the accuracies (pi  with which the
individual measurements have been made, eqn (1.36) pays no regard
to the degree to which these determinations are mutually consistent.
Thus ai/fi  can be regarded as the theoretical error that we expect
on the basis of the accuracies of each measurement, while s/a is an
experimental measurement of how spread out are the separate values of
Ui.
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Which method should we use for determining the error on the mean?
If the errors bi are estimated correctly and the measurements ai are
unbiassed, then ai/&?  and s/a  should agree with each other satis-
factorily. The problem with s  is that, especially for small values of N,
fluctuations can have a serious effect on its value. Thus some people
adopt the strategy of choosing the larger of ai/-  and s/n for the
error on the mean. My preference is to use ai/fi  provided the two
values are reasonably in agreement, and to worry about the consistency
of the measurements if s is significantly larger than ui.

Discussion of how well the two estimates of the error of the mean
should agree, and also the extension of the above example to the situa-
tion where the individual errors are unequal, is best dealt with by the
x2  technique (see Chapter 2).

Example (ii)
The eqns (1.35) and (1.36) are in agreement with common sense when
the separate experiments have achieved different accuracies 0; by using
the same apparatus but by averaging different numbers n; of repeated
measurements. In this case the oi  are proportional to l/J;;i  (see Ex-
ample (d) in Section 1.7.1).

Then the eqns become

a =  cniai/Cni (1.37)

and

N = Eni. (1.38)

The first of these says that each of the original measurements of equal
accuracy is to be weighted equally; the second is self-evident. (See prob-
lem 1.5.)

Example (iii)
We are trying to determine the number of married people in a country,
using the following estimates:

Number of married men = 10.0 f 0.5 million,
Number of married women = 8 f 3 million.

Then the total is 18 f 3 million, where we have obtained the error on
the sum as described in Section 1.7.1.

If, however, we assume that the numbers of married men and  women
are equal, each provides an estimate of half the required answer. Then
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we use eqns (1.35) and (1.36) to determine the married population as
20 f 1 million.

Thus we see that calculating the sum or the average of experimental
quantities are not equivalent to each other, as the latter implicitly as-
sumes that the quantities we are averaging are supposed to be equal.
This extra information results in improved accuracy for the answer.

1.11 Worked examples

We now present some simple worked examples that illustrate the earlier
sections of this chapter. The confident student can proceed directly to
Section 1.12.

1.11.1 Mean and variance

The following are measurements in grams of the mass of an insect, all
with equal accuracy:

5.0 5.3 5.9 5.3 5.2 5.7 5.4 5.1 4.8 5.3

What is our best estimate of its mass, and how accurate is this?

We determine the average of the measurements from eqn (1.2). We
first calculate C rni = 53.0 g, where rn; are the individual measurements.
Then

jji = Cmi/lO  = 5.3 g

Next we use eqn (1.3') to estimate s2, the variance of the distribution
of the measurements. The individual deviations Si from the estimated
mean of 5.3 g are

-0.3 0.0 0.6 0.0 -0.1 0.4 0.1 -0.2 -0.5 0.0

(As a check, we note that the sum of these deviations is zero, as it must
be.) Then

1s2  = -
9 c ST  = 0.91/9  = 0.10 g2

Thus our estimate of the width of the distribution is a, which is 0.3 g.
Numerically, this seems not unreasonable when we look at the individual
deviations from the mean. Finally the error on the mean is better than
this by a factor of JIG, so we quote our answer as

5.3 f 0.1 g.



1.11.2 Using a Gaussian distribution

An experiment measures the current gain of a transistor as 201 & 12.
The expected value is 177 f 9. Assuming that both these are Gaussian
distributed, how consistent are the measurements?

The difference between the measured and expected values is 24, and
the error on the difference is dm = 15. Thus we want to know
how likely it is that, if the true difference were zero and we performed
an experiment with an accuracy of f15,  the observed difference would
deviate from zero by at least 24. This discrepancy is 1.6 standard de-
viations, and from tables of the Gaussian distribution we find that the
fractional area beyond 1.6~  is 10%. Thus in about 1 experiment in 10,
we would expect a random fluctuation to give us a deviation of at least
this magnitude, assuming the two values really are perfectly consistent.
This probability does not seem too small, so we are likely to be happy
to accept the two measurements as agreeing with each other. (We really
should have decided beforehand on the cut-off level for an acceptable
probability.)

1.11.3 Central Limit Theorem

Illustrate the Central Limit Theorem as follows. Add together four
random numbers ri,  each distributed uniformly and independently in
the range 0 to 1 (taken from Appendix 7 at the end of the book, or from
your pocket calculator), to obtain a new variable z = C ri.  Repeat the
procedure 50 times in all, to obtain a set of 50 zj values. Plot these as a
histogram, and compare it with the appropriate Gaussian distribution.

Using the first 200 random numbers of Appendix 7, we obtain the
following zj values:

1.759 2.161 2.150 2.896 . . . . . . . . . . . . . . . . . . . . . . . 2.792 0.834

These are drawn as a histogram in Fig. 1.10. Also shown there is the
curve

y = c exp {-(z - ~)~/2a~)  AZ (1.39)

where y is the number of entries per bin of width ∆Z, and the mean
p and width CT are chosen according to the paragraph below eqn (1.14)
as 2 and dm (dm  being the RMS of the uniform x  distribution
of width 1 - see problem 1.2(c) - and 4 being the number of x values
added to construct z).  Agreement between the histogram and the curve
would be expected only if the number of x values added together were
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Fig. 1.10.  The histogram is that of 50 z values, each of which
was obtained by adding four consecutive random numbers from the
Table A7.1. The curve is the Gaussian, given by eqn (1.39) of the
text. According to the Central Limit Theorem, the distribution of
the sum of n random numbers should approximate to a Gaussian if
n is large. Even with n = 4, and with only 50 entries, the histogram

is reasonably consistent with the curve.

large and if there were many entries in the histogram. We see that even
with only four z’s added, and with their distribution being uniform, the
resulting z distribution is reasonably consistent with a Gaussian, and of
the expected parameters.

1.11.4 Combining errors

(i) Find the total voltage across two resistors in series, when the voltages
across the individual resistors are 10.0V and 5.0V, each measured with
10% random error.

Since the total voltage V = VI +Vz,  we need to combine absolute errors
rather than fractional ones. We thus express the voltages as 10.0 f 1.0
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and 5.0 f 0.5 V, and obtain their sum as 15.0 f 1.2 V, where we have
combined the errors by Pythagoras’ Theorem (see eqn (1.20)).

If instead the 10% error on the voltages arose from a calibration
uncertainty in the single voltmeter which was used to measure both
voltages, the total voltage would be given by V = (VI +  Vz)f, where
f = 1.0 f 0.1 is the scale factor relating the true voltage to the meter’s
reading, and we are assuming that reading errors are negligible. In this
case, V = 15.0 f 1.5 V.

(ii) The voltage V across a resistor is determined as IR,  where the
current  I  is measured as 20 f 2 mA,  and the resistance R  is 1.0 fO.1 kS1.
Find V.

Since this is a product, it is the fractional errors that are important.
These are each 10%, and so the error on the answer is, according to
Pythagoras’ Theorem, 14% (see eqn (1.27)). Thus V is 20 f 3 V.

(iii) A certain result z is determined in terms of independent mea-
sured quantities a, b  and c by the formula

z = a ln c - bc.

Determine the error on z  in terms of those on a, b  and c.

We first differentiate partially with respect to each variable:
dz dz a.2 a
z=lnc,  z=-C,  z=;-b

Then we use eqn (1.30) to obtain

a,2 = (lnc)‘02  + c2a,2  + (z - b)2a,2.

(The only part that could give some difficulty is the contribution from
the error in c. It is important to combine the two contributions f6c
and -MC before squaring; thus a term { (u/c)~  + b2}  (~2  appearing in
the answer would be incorrect. In fact, provided a/c  and b  have the
same sign, we get some cancellation between the two contributions, and
the error is somewhat smaller than we might at first have thought. If
we are still not convinced, we can substitute specific numerical values
for a, b and c to obtain z,  and then recalculate z  for a slightly different
value of c, in order to see explicitly the contribution to the change in z 
arising from a change in c. Provided such changes are small, we should
find that bz ~ (f - b)6c.)

1.11.5 Combining results

Two independent measurements of the same quantity are 100 f5 and
106 f7.  What is the best estimate?
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From the first paragraph of Section 1.10, we find that the relative
weights of the two determinations are 49:25~2:1. Thus the weighted
average is 102, and its error is given by eqn (1.36) as

~ 4.

Thus the best estimate is 102 f 4. Not surprisingly, the error on the
combined answer is smaller than that on either of the individual mea-
surements.

(Had the errors on the two measurements been more different, we
would have obtained a significant difference in the errors on the best
weighted average and on the simple average. Thus measurements of
100 f 5 and 94 f 20 combine to give a best estimate of 100 f 5, while
the simple average is 97 f 10.)

1.12 Does it feel right?

When you have finally calculated an error, you should spend a short
while thinking whether it is sensible.* An important check is that your
expression for the error should have the same dimensions as the quantity
itself. If not, something terrible has gone wrong with your formula for
the error.

Next you should see whether the magnitude of your error agrees with
your intuitive feeling about the reliability of your result. Thus if your
measurement of the resistance of a coil yields 5 f 4 s2,  your error is
comparable in magnitude to the quantity itself. This should reflect the
fact that your measurement is not significantly different from a value
of zero for the resistance. If your feeling is that this experiment really
did determine the resistance with reasonable accuracy, then you should
go back and look at your calculation of the error again. Incidentally, if
the error estimate is correct, it does not mean that your measurement
is completely useless. For example, perhaps some behaviour of a circuit
incorporating this coil could be understood if its resistance were 25 at;
your measurement is inconsistent with this.

At the other extreme, an error that is very small compared with the
measurement (for example, 1 part in 104)  suggests a very accurate ex-

* Of course, similar considerations apply to the quantity itself.
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periment, and you should check that your results indeed justify such
confidence in your answer.*

In a similar way, there is usually little point in quoting your error
to a large number of significant figures. There is no need to go as far
as calculating the error on the error, but often the input to an error
calculation consists of statements like ‘I think I can read the deflection of
the oscilloscope spot to about half a millimetre’. Now this does not imply
that the error on the deflection is 0.5 mm rather than 0.4 or 0.6 mm.
Indeed on another day you might have decided that this accuracy was
1/4 mm or 1 mm. Clearly with this degree of arbitrariness concerning
the basic accuracies, the error on the answer is unlikely to justify more
than one or at most two significant figures. Alternatively, if the error
is estimated from the spread of the individual results, we need a large
number of repetitions in order to make our error estimate accurate (see
last paragraph of Section 1.4).

It is also very important to remember that statistics can provide you
with a set of formulae to use, but in an actual practical situation it
is not simply a case of choosing the correct formula and applying it
blindly to your data. Rather you have to make specific judgements.
For example, you may have made several measurements over a period of
time, and want to combine them. Then it is necessary to decide whether
all the measurements should be included in the average or whether some
of them should be discarded because of possible bias; whether all the
results have the same accuracy; what are the possible systematic effects;
whether there might be a possible time dependence of the answer; etc.
Thus although problems in books on errors may have unique answers,
real life situations are more interesting and we have to use our experience
and intelligence.

Finally, in order to demonstrate that error calculations do present
problems even for experienced scientists, Fig. 1.11 shows the way in
which the combined best value of the mass of the proton (as obtained
from all the different experiments that have measured it) has behaved
as a function of time. Assuming that the proton’s mass really has not
varied, we would expect all these values to be consistent with each other.
The fact that they clearly are not demonstrates that either some or all

* A scientist who quoted his error as 1 part in a thousand was asked
what the three significant figures represented. He replied ‘Faith, Hope
and Charity.’
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Fig. 1.11. The world average value of the proton mass IUP, as a
function of time. The mass is quoted in MeV/c2.  In these units,
the electron mass is 0.5109991 MeV/c2,  with an error of 2 in the
last decimal place. (Based on information from the Particle Data

Group.)

of the errors have been underestimated. Thus, maybe there were biasses
present in the experiments which were not allowed for in the quoted
errors, or else the statistical errors were for some reason wrong.
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1.1 Write brief notes on errors (including random and systematic
errors, and rules for combining errors).

1.2
(i) A set of 13 measurements are made on a physical quantity.

The following values are obtained: 0, 1, 2, 3, . . . , 12. Estimate
the mean Z, the RMS spread s  and the accuracy of the mean
u.

(ii) A new set of 36 measurements are made with the result that
the values

0, 1, 2, . . . , 5, 6, 7, . . . , 11, 12
occur 0, 1, 2, . . . , 5, 6, 5, . . . , 1, 0 times respectively.
Estimate Z, s and U.

(iii) The function n(z) is defined as

n = {
1/L for 0 5 x < L,
0 otherwise.

Find the average value of x,  and the spread s  for this distri-
bution.

(iv) Repeat the problem of (iii) above, but for the function

{

4x/L2 for 0 5 x 5 L/2,
n = 4(L - x)/L2 for L/2 < x 5 L,

0 otherwise.

(v) Compare the answers for (i) and (iii), and for (ii) and (iv).
(You should find that, for a sensible choice of L, the results in
(i) and (iii) are approximately the same, and similarly for (ii)
and (iv). You should also find that the value of s  is smaller for
(ii) and (iv), since the measurements are more concentrated
near the mean, than are those in (i) and (iii).)

The situation described in (iii) is very relevant for a nuclear
physics scintillator, which detects charged particles that pass
through it. If the device is of width L in the x direction, all we
know when it gives a signal is that a particle passed through it
somewhere between x  = 0 and x = L. If we want to specify the
x coordinate of the particle (for example, for linking together
with other measurements in order to find the direction of the
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track - see problem 2.4), then we would quote the average and
the spread that you have calculated.

1.3 The probability P(t)&  of the decay of a radioactive particle
between times t  and  t  + 6t is given by

1
P ( t )δ t  = -eqti7 6t

7
where r is a constant known as the mean lifetime. Prove the
following.

(i) P(t)& behaves like a probability in that its integral over all
positive values oft is unity.

(ii) The expected mean value of the decay time t,  according to the
above probability distribution, is r (which is why r is known
as the mean lifetime).

(iii) The expected root mean square deviation of decay times about
the mean lifetime (i.e. ,/m ) is r.

Several observations are made of the radioactive decay of a
charmed meson. The measured decay times, in units of lo-l2
seconds, are 0.28, 0.02, 0.09, 0.17, 0.10, 0.62, 0.48, 0.06, 0.85
and 0.08. Use the result (ii) above to obtain an estimate of the
lifetime r of this particle. Given that you know from (iii) above
that each individual decay time has an error r to be assigned
to it, what is the error on the estimate of the lifetime that
you have just obtained ? As an alternative, use the observed
scatter of the individual decay times in order to calculate the
error on the mean lifetime.

1.4 By measuring yourself with four different rulers, you obtain
the following estimates of your height: 165.6+0.3, 165.1 f- 0.4,
166.4 f 1.0 and 166.1 f 0.8 cm. What is the best estimate of
your height, and how accurate is it? What would have been
the best estimate if you had neglected the accuracies of the
individual measurements?

1.5 Three schoolchildren A, B  and C perform a pendulum experi-
ment with the same apparatus in order to determine the accel-
eration due to gravity g. An individual measurement consists
of timing 100 swings of the pendulum, and this is what A
does. However, B does this twice and averages the two values
to obtain an improved answer, while C takes the average of
ten sets of swings. If A’s answer has an uncertainty (T,, what
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1.6

1.7

1.8

(i)

(ii)

(iii)

1.9

are the expected accuracies of B’s and of C’s determinations?
(Assume that the dominant error is the random one associated
with timing the swings.)

The teacher now takes the three students’ determinations
(a zf oG,  b & at,  and c f σc) and uses the prescription (1.35)
and (1.36) to obtain his estimate of g and its error. Show
that these are identical with what the teacher would have ob-
tained by taking all 13 individual measurements and averaging
them, without regard to which student had performed which
determination.

We wish to determine the ratio f  of the strengths of two ra-
dioactive sources. For the first we observe 400&20  decays in a
minute, and for the second 4f2  in the same time. According
to eqn (1.27), the value of f  is 100 & 50. Is this realistic, or
is there a way of quoting f  and its error which gives a better
idea of our knowledge of the ratio?

For   f  = x - 2y + 3z (with x, y and z  having uncorrelated
errors), prove from first principles that

In each of the following cases, determine the answer and its
error, assuming that the errors on the relevant quantities in-
volved in the calculation are uncorrelated.

Determine the distance between the points (O.O~t0.2,  O.Of0.3)
and (3.0 f 0.3, 4.0 f 0.2), and the angle that the line joining
them makes with the x axis.

The number N of particles surviving a distance x in a medium
is given by N,exp(-z/A), where N, is the number at x = 0,
and λ  is the mean free path. What is N if N, = (1000 f 5).106,
x = 1.00 f 0.01 m and λ  = 0.25 f 0.06 m?

A particle travels along a straight line trajectory given by
y = a + bx.  If a  = 3.5 f 0.3 cm and b = (5.0 f 0.1) . 10m2,
what is the value of y at (a) x = 4 m and (b) x = 4.0 & 0.1 m?

The molar specific heat c of a metal at low temperature T  is
given by c = aT  + bT3. If a = 1.35 f 0.05 mJ  mol-’  KB2,
b = 0.021 h 0.001 mJ mol -l Ke4,  and T = 5.Of  0.5K, what is
the value of c?

A man lives in a rectangular room for which he wants to buy
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carpet and wallpaper. The required quantities of these will
be proportional  to the floor’s area and perimeter respectively.
He thus measures the floor, and finds that its dimensions are
l f ul  and b f ob, with the errors being uncorrelated. Find the
errors on the area and on the perimeter, and show that they
are correlated.

This illustrates a general way in which correlations can arise:
we make two or more uncorrelated measurements, and then
derive new variables which are functions  of the original mea-
surements. Other examples include (i) measuring the x  and
y coordinates of a point, and then calculating the polar vari-
ables r and 0; (ii) measuring x  and y, and then rotating the
coordinate system to obtain x' and y'; and (iii) deducing the
intercept and gradient of a straight line fit to several (x, y) sets
of data (see Chapter 2, especially Fig. 2.4).

1.10 A measurement with some apparatus produces an answer x
that is equally likely to be anywhere in the range 10 to 11.
We would say that the likely result ,u was 10.5 with an RMS
spread u of l/m  (see problem 1.2(iii)).

Now imagine taking three measurements with this appara-
tus. You can simulate this by using three random numbers in
the range 0 to 1 (which you can obtain either from your cal-
culator, or from a table of random numbers such as is given in
Appendix 7), and adding 10 to each. Then calculate Z and s2,
the estimates of the mean and the variance, from eqns (1.2)
and (1.3'). Repeat this procedure several times, and make a
list of the 5 and s2  values. Note that 5 and s2  scatter about
their true values p and a2  respectively. (Compare comments
at the end of Section 1.4.)
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Least squares fitting

2.1 What are we trying to do?

In this chapter we are going to discuss the problem of obtaining the
best description of our data in terms of some theory, which involves
parameters whose values are initially unknown. Thus we could have
data on the number of road accidents per year over the last decade;
or we could have measured the length of a piece of metal at different
temperatures. In either of these cases, we may be interested to see
(i) whether the data lie on a straight line, and if so (ii) what are its
gradient and intercept (see Fig. 2.1).

These two questions correspond to the statistics subjects known as
Hypothesis Testing and Parameter Fitting. Logically, hypothesis testing
precedes parameter fitting, since if our hypothesis is incorrect, then there
is no point in determining the values of the free parameters (i.e. the
gradient and intercept) contained within the hypothesis. In fact, we
will deal with parameter fitting first, since it is easier to understand.
In practice, one often does parameter fitting first anyway; it may be
impossible to perform a sensible test of the hypothesis before its free
parameters have been set at their optimum values.

Various methods exist for parameter determination. The one we dis-
cuss here is known as least squares. In order to fix our ideas, we shall
assume that we have been presented with data of the form shown in
Fig. 2.1, and that it corresponds to some measurements of the length
of our bar ypbs at various known temperatures zi.  Thus the subscript i
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Fig. 2.1 Least squares straight line fit. The data consist of a
series of points (zi,  yi  f ai),  whose x coordinates are assumed to be
known exactly, but whose y coordinates have (varying) experimental
uncertainties &. The problem is to find that line such that the sum
of the weighted squares of its deviations from all the points is smaller
than that for any other possible line. The deviations are measured
not as the shortest distance from each point to the straight line,
but simply in the y direction. The weighting factor for any point is
inversely proportional to the square of its error ui;  this ensures that
the less well measured points do not significantly pollute the better

data, while still not being completely ignored in the fit.

labels the different measurements. Each of the length measurements has
a certain random error Syi associated with it; these need not all be the
same. On the other hand, the temperatures zi are assumed to be known
exactly.

The theory must be such that, if the parameters we are trying to
determine are specified, then there is a unique prediction for y at each
of the xi values. We denote this by yih(o),  where α is the one or more
parameters involved in our theory. Some examples are provided in Table
2.1. Although the method of least squares is general and can be applied
to any of these functions, we are going to concentrate on using it to fit
straight lines.
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Table 2.1. Possible fitting functions 
The set of data points gobs  is compared with the

corresponding theoretical predictions yth via eqn

(2.1). Some possible examples of 91h(z) are given,

with the parameters involved in the theoretical

predictions being shown explicitly.

Type y th Parameters

Constant c c

Proportionality mx m

Straight line a + bx a, b 

Parabolic a + bx + cx2 a, b, c

Inverse powers  a + b/x + . - .  a, b, . . .

Harmonic  A sin k(x - xo) A,  kxo

Fourier c an cos nx ao,a1,a2,...

Exponential

Mixed

2.2 Weighted sum of squares

If we imagine drawing a whole series of straight lines on the graph of
our results (see Fig. 2.2), our judgement of how well any one describes
our data would be based on how close it passes to the individual points.
The quantity that we use as the numerical quality factor for each line is
the weighted sum of squares:

s=c yth(u,  b) - yiob5 2

i oi >
(2.1)

where yfh(u, b) is the theoretical predicted value at the given xi,  for the
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Fig. 2.2 Fitting data points by straight lines. The line Lr is reason-
ably close to all the data points (i.e. the deviations are of compara-
ble magnitude to the individual errors), and so gives a small value
for S  of eqn (2.1). The other lines have large deviations from some
or all of the data points, and give large values for S. The best line

is defined as that which has the smallest S.

particular values of the parameters a and b  for this line, i.e.
th

Yi =a+bxi. (2.2)

The summation extends over our data points.
The ui  is some error for each point. In principle it is supposed to be

the theoretical error, i.e. the error that would have been expected for
the data, assuming it agreed with the theoretical prediction. In practice,
we tend to use the observed experimental error on the points (i.e. Syi),
on the grounds that

(i) it makes the algebra of determining the best line very much simpler,
and

(ii) provided the points are not far from the line, the two types of
errors should not differ greatly.

Clearly the closer each of the yi” is to the corresponding yfbs, the
smaller S will be. Indeed S is zero if theory and experiment are in
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perfect agreement for all the data points. Thus we are going to assess
the goodness of fit for any particular theoretical line by how small S is
(see Section 2.8).

The usual reaction of someone meeting the definition (2.1) for the
first time is to ask why it contains a square, and why we need the 0:
in the denominator. Could we not instead use, for example, the simpler
expression

S’ = C(yfh(a,  b) - ypbs) (2.3)
i

which is also zero when yjh = ypbf?
The trouble with expression (2.3) is that the individual terms con-

tributing to the sum can be positive or negative, and we could equally
well obtain a zero value for S' from a line which was far above some of the
points, and far below others. Furthermore, we can make S' even smaller
than zero simply by choosing a line off the bottom of the page, when all
the contributions to the sum will be negative. Clearly a very negative
value of S' is not at all good, and so we have lost the correspondence
between the best fit and the minimum value of S'. To remedy these
defects, we need to stop the individual contributions becoming nega-
tive. This we could achieve by writing them as lyih  - ytbS 1, but it is
mathematically simpler to use (yih - Y:*‘)~.

Thus we are prepared to accept the need for squared terms, but why
do we need the 0; in eqn (2.1), rather than defining

s” = C(y’h(a,b)  - yi”bs)2? (2.4)
i

Indeed this expression is sometimes used, and as we shall see the best
line obtained via eqn (2.1) is equivalent to that from the alternative
definition (2.4) for the special case where all the errors ui  are equal.

The advantage of eqn (2.1) is that it takes better account of data of
different accuracies. Effectively each point is weighted by a factor l/a:,
so that points with smaller errors are much more important. What our
best line aims to do is to ensure comparable magnitudes for the frac-
tional distances of the line from each of our points, where the fractional
distance is defined as (yi” - yp*“)/~i,  i.e. it is the number of errors by
which the prediction differs from the data. Without this factor of u’  in
the denominator of (2.1), the best line would instead give comparable
absolute discrepancies ( yjh - yPbs),  and thus would treat points with
large errors as if they were as accurate as well-measured data.

A second point of some significance is that eqn (2.1) enables us to go
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on and see whether the agreement between the theory and the data is
satisfactory (see Section 2.8); this is not possible if we instead use eqn
(2.4).

Having looked at the ideas involved in the least squares method when
we are fitting a straight line to the data, we can now turn to an even
simpler situation, and see that we obtain very sensible answers. Let
us imagine we have n independent measurements ai f (T; of the same
physical quantity, and we wish to combine them in order to extract the
best estimate a. The least squares method tells us (see eqn (2.1)) to
construct

S(u)  = c (yq2
and to determine a by minimising S(a). This yields

which is exactly the weighted average we already quoted in Section 1.10.
For the special case where all the errors (pi  are equal, we obtain the even
simpler result

a =
Cl

 n

i.e. a is the average of the separate measurements.
There are two ways of looking at what we have just done. Either

we can say that the least squares approach provides a derivation of the
weighted average answer of Section 1.10; or we can  regard these results as
to some extent justifying the use of the weighted least squares approach
as a technique for determining parameters.

2.3 Determining the parameters

We are now ready to use eqn (2.1) to help us find the best line. We can
imagine doing this as follows. We draw lots and lots of lines rather as
in Fig. 2.2, for each of them calculate S, and then choose the best line
as the one which gives the smallest value of S.

Clearly this is very inefficient, and it is far preferable to find the min-
imum of S mathematically. The different straight lines of the previous
paragraph are each specified by their a and b,  and so the minimum of S
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is given by*

dS 0-=
da

and
dS
z==O

where from eqns (2.1) and (2.2)

a+b;;-Yi>’

(2.6)

(2.7)

(from here on, we drop the superscript ‘obs’ on the measured y;).
It is worth reflecting on the fact that  this definition of S involves

a, b,  xi and yi. Normally we would think of a and  b  as constants, and
x and y as variables. Here, however, the situation is reversed. We have
a fixed set of data points, specified by constants xi and y;, while a and
b are the parameters of the lines that we are going to vary.

On differentiating S of eqn (2.7) partially with respect to a and then
b, we obtain

13s--=
2 da

a + bxi  -  yi
uf >

= 0

and 1 as (a + bxi  - yi)xi
qg= u’

= 0

P-8)

(2.9)
These are two simultaneous equations for our two unknowns, which yield

where the quantities in square brackets are defined by

(2.10)

Note that the weighted means (f) of the same quantities are given by

(f> = VllPl~ (2.12)

Eqn (2.10) is a nice compact formula for b. Just to make sure that
the notation does not obscure what has to be done, we can write it out
more fully as

b = c(l/d)  C(xiyi/u’)  - c(xi/ui”)  c(!~h/~;)
*

(2.10')

Then a is determined by rewriting eqn (2.8) as

(Y) =  a + b<x>. (2.13)

* See Appendix 2.
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In longhand, this is

C(Yi/d,  = a cc 1 (2.13')

Eqn (2.13) hs ows that the best line (in the least squares fitting sense)
passes through the weighted centre of gravity ((z),  <y>) of all the data
points, with the weighting of each point as usual being inversely propor-
tional to 0”.

We note in passing that the average x  coordinate (2)  is given by
weighting the individual xi values by factors that depend on the errors on
the  y  values. This is because the weighting factor applies to the (xi,  yi)
data point as a whole, and not just to the yi value itself. Thus if all the
points but one have large y  errors, their weights will be relatively small,
and the weighted centre of gravity (in x and in y)  will nearly coincide
with the single well-measured point. We cannot use the x errors for
weighting, since it is an intrinsic feature of this approach that we regard
the xi values as being determined precisely without error.

2.4 The error on the gradient and intercept

Now that we have obtained a and b,  we must determine how accurately
we know them. Just as in the case of determining the value of a single
parameter from a set of measurements - see Section 1.10 - there are two
ways in which this can be done. The first makes use of the errors (pi
on the individual measurements in order to determine the errors on a
and  b,  while the second uses the scatter of the measurements about the
fitted line (see Fig. 2.3). As in Section 1.10, we regard the former as in
general more reliable. The second method will give much larger errors
when the minimum value of S is large. This implies that the observed
points deviate significantly from the “best” straight line, and hence that
the values of the parameters a and b  themselves should be regarded with
suspicion.

2.4.1 Using the errors ui

This is done most easily if we first transform our x  coordinates, so that
the  origin, i.e.the previous weighted mean <x> is now at

x' = x - <x>.
Then the equation of the line becomes

y = a' + bx'
I

(2.14)

(2.15)
/ where a' is the height at the position of the weighted mean <x>. We
I
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la)

(b)

Y

x-

Fig. 2.3 Errors on intercepts and on gradients can be estimated
from the assumed accuracies of the individual points (see Section
2.4.1), or from the scatter of the data about the fitted line (Section
2.4.2). For (a) the assumed accuracy method gives larger errors; for
(b) this is so for the scatter; in (c), the methods give comparable
errors. This is connected with the fact that in (a) the data are
(perhaps a bit too) consistent with a straight line, and Smin  is very
small; in (b) Smin is large and the fit is improbable; while in (c),
S min ~ n - 2 (see page 60) and the data are reasonably consistent

with the line.
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do this because the errors on the gradient and on a' are uncorrelated;
and we discovered in Chapter 1 that it is much simpler to deal with
uncorrelated errors. Incidentally, at x' = 0 (i.e. at the weighted average
of the xi values), the estimate for the intercept a' reduces simply to (g),
the weighted average of the yi values; this is not surprising.

The values of the errors are given by ()$$$)-:  and (+a)-$.  Thus
 

we  find 

u2(u’)  = 1/[1]

and u2(b) = 1/[2’2].

Again we can write these out more fully as

(2.16)

1/u2(u’)  =  X(1/u”)

and 1/cr2(b)  = C(x;2/af).
(2.16')

Our calculation of a(u’)  gives us the error on the predicted value at
Xl = 0. If we want the error on the prediction at any other x', then
we can propagate the uncorrelated errors on a' and b via eqn (2.15) to
obtain

a2(y) = u2(u’)  + x’2o2(b). (2.17)

In particular, if we set 2’ = -(x),  the value of y is our original intercept
a, and we obtain

u2(u)  = a2(u’) + (x)2o2(b), (2.18)

but the errors on a and b are now correlated (unless <x> = 0). How this
correlation arises can be appreciated from Fig. 2.4.

Some simple features of the results we have obtained are worth noting.

(i) The eqns (2.10) and (2.13) for a and b, and (2.16) for the errors,
are dimensionally correct.

(ii) If the errors CT~  are all equal, they can be cancelled from eqns (2.10)
and (2.13).

(iii) If the errors for all n data points are equal, then

a(u’)  = a/&i,

i.e. the uncertainty in the intercept at the position of the (weighted)
mean is l/4  of that of an individual point.

2.4.2  Using the scatter of points

Here we ignore the errors ui, and instead estimate a common error a
for all the measured points by using the scatter of the data about the
best fitted line. This method can also be used in the hopefully unusual
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(a) (b)
L' / '

a

a f
y

// /
/

O x - x+0

Fig. 2.4 An illustration of the fact that for a least squares straight
line best fit, the errors on the gradient b  and on the intercept a are
correlated, with covariance proportional to -(z),  the x  coordinate of
the weighted centre of gravity of the data points (G in the diagrams).
The best fit line L passes through G. If the gradient is increased by
its error (to give the line L'), then the intercept a will decrease if (2)
is positive (diagram (a)), or will increase if (CC)  is negative (diagram

(b)).

circumstance that the errors on the y values of the individual data points
are not known.

We first have to recalculate the values of a and b; since we are changing 
the values of the errors, the new best line will in general differ somewhat
from our previous one. Because all the cri  are now assumed to be equal,
their exact value cancels out in equations (2.10) and (2.13) for a and b. 
Then we use these new values of a and b  in eqn (2.7), to obtain

S
1

min =-
CT2 cc a + bXi  - yi)2.

The expected value of Smin for such a straight line fit to n data points
is n - 2 (see Section 2.8 below), so we choose

1
*2  = -

n - 2 cca + bxi -  Y;)~. (2.19)

That is, (T  is estimated as the root mean square deviation of the measured
points (yi)  from the predicted line (a+  bxi), except that a factor of n - 2
appears in the denominator instead of n. This is in analogy with our
estimate of the spread of a series of measurements of a single quantity
(see eqn (1.3')). There the factor was n - 1, since we had one unknown
parameter - the true value of the quantity being estimated; here we have
two, the intercept and the gradient of the straight line.

We now use this value of CT in the right hand sides of eqns (2.16') to
obtain the errors on a' and on b, based on the observed scatter of points
about the best line.
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2.5 Other examples

So far we have discussed the case of fitting a straight line to the data.
Although this is a common situation, our theoretical prediction may
consist of some other functional form. What should we do?

One approach is to realise that sometimes a non-linear relation in-
volving two parameters can be transformed in some simple way to be a
straight line in different variables. For example, if

y = AeXZ (2.20)

then lny=lnA+Xr (2.20')

so that the relationship between ln y and x  is linear. Similarly, if

y =  ax + bx3 (2.21)

then y/x depends linearly on x 2. Of course in all such cases we must
transform our original errors 6yi to those on the new dependent variable
(i.e. on ln y or on y/x in the two examples above).

This technique certainly cannot work if we have more than two pa-
rameters in our expression for y, e.g.

y = a +  bx +  cx2

or Y’C an cos nx.

However, in these cases we simply

(2.22)

(2.23)

(i) substitute the relevant expression for the predicted y as yth in eqn
(2.1),

(ii) differentiate partially with respect to each of the p  parameters to
be determined,

(iii) set these p  partial derivations equal to zero, to obtain p  simulta-
neous equations for our p  unknown parameters, and finally

(iv) solve these equations to obtain the values of the parameters.

The last stage is straightforward if the function y is such that the
parameters occur in it in a linear way, as in eqns (2.22) and (2.23). It
is not so, for example, for

y = A sin IC(X  - xc)

or for y =  a +  x/a.

For such non-linear cases, it may well be easiest to find the best values
of the parameters simply by varying them until the smallest value of S 
is found; with a computer this may not be too difficult.

The question of the accuracy with which the parameters are deter-
mined for cases more complicated than the straight line fit is most simply
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dealt with by error matrix techniques, which are beyond the scope of
this treatment.

2.6 yobs as numbers

In many applications, the data that we are trying to fit may be such that
y is a number of observations. Thus one of the examples in Section 2.1
involved the number of road accidents per year. Alternatively we could
plot the number of decaying nuclei of a particular radioactive species as
a function of time. Now we will assume that the following conditions
are satisfied.

(i) A single event occurs at random and has a fixed probability of
occurring during the interval considered.

(ii) The occurrence of one event in a given interval does not influence
whether or not another will take place.

(iii) We observe all the events that occur even if they are very close
together.

Then under identical conditions a repeated measurement would usually
not yield an identical answer, because there are inherent random fluc-
tuations in the processes. The distribution of observed numbers follows
what is known as a Poisson distribution,* which is such that the ex-
pected root mean square spread of the distribution (when the mean is
N) is fi. T hus in these circumstances, observed numbers are often
quoted as N f a.

In these cases, since the error is @, our formula (2.1) reduces to

s = c
i

o r

(2.24)

(2.24')

depending on whether we use the observed or the theoretical error for
0;.

Unfortunately, many people tend to remember eqn (2.24) or (2.24'),
and to regard it as the general formula for the weighted sum of squares

that can be applied in all cases, even when the observations are not
numbers. THIS IS WRONG. Indeed if we replace the Ni in eqn (2.24)
by yi,  and try to apply it to the case where y is the length of a metal bar,

* See Appendix 4
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we are in effect assuming that the error in the length measurement is Jis;
not only is this dimensionally incorrect, but it is also unrelated to the
experimental reality of how accurately each of the lengths is determined.

Thus the best advice is ‘FORGET EQN (2.24)’. Now this does sound
a bit like the instruction that for the next ten seconds it is absolutely
forbidden to think of rhinoceroses. However it causes so many mistakes
that it really is important to get into the habit of ALWAYS using eqn
(2.1); and if the measurements are numbers that do satisfy the require-
ments of a Poisson distribution, we simply set CT~  = a.

2.7 Parameter testing

We now return from the simpler question of what are the best values of
the parameters, to the more fundamental one of whether our hypothesis
concerning the form of the data is correct or not. In fact we will not be
able to give a ‘yes or no’ answer to this question, but simply to state
how confident we are about accepting or rejecting the hypothesis.

There are two different types of hypothesis testing. In the first, our
hypothesis may consist simply of a particular value for a parameter.
For example, if we believe that the metal we were examining had the
special property that it did not expand on heating, we could test that the
gradient of the graph of length l  against temperature T  was consistent
with zero. This is parameter testing, which we deal with as described in
Section 1.6 earlier.

Thus we assume that all the necessary conditions described there are
satisfied and that the error on the parameter has not been obtained from
the observed spread of a few measurements. Then we use eqn (1.16)
and Fig. 1.7 to tell us how often, if our hypothesis is correct, we would
obtain a result that differed from the expected one by at least as much as
ours does. If this was suitably low (e.g. less than 5%, or less than 1%),
then we would reject our hypothesis. Otherwise, we have no evidence to
believe that the hypothesis is wrong (although this is quite a long way
from having proved that it is correct).

If the error on our parameter had been estimated from the spread of
a few observations, then we should use the relevant Student’s t  distribu-
tion, as explained in Appendix 5.
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Fig. 2.5 The desirability of examining a distribution rather than
simply determining a parameter when we are hypothesis testing. If
we fit either the solid or the dashed distribution by eqn (2.25), the
resulting value of b is likely to be close to zero. This does not imply

that either distribution is constant.

2.8 Distribution testing

In general it is preferable to perform distribution testing. Thus in order
to check that a material does not expand on heating, it is more sensible to
see whether the graph of l against T  is consistent with being constant,
rather than simply testing whether a straight line fit gives a gradient
close to zero. This is because there are many non-constant distributions
which could give a value of b ~  0 if we insisted on fitting an expression

l = a + bT (2.25)

to the data; a couple of examples are shown in Fig. 2.5.
Distributions are tested by the x2  method. When the experimentally

observed yp*” of each experimental point is Gaussian distributed with
mean yi’” and with variance a;, the S defined in eqn (2.1) is distributed
as x2. So in order to test a hypothesis we

(a) construct S and minimise it with respect to the free parameters,
(b) determine the number of degrees of freedom v from

u =n- p (2.26)

where n is the number of data points included in the summation
for S, and p is the number of free parameters which are allowed to
vary in the search for Smin,  and
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Fig. 2.6 x2  distributions, for various numbers of degrees of free-
dom Y (shown by each curve).  As v increases, so do the mean

and variance of the distribution.

(c) look up in the relevant set of tables the probability that, for v
degrees of freedom, x2  is greater than or equal to our observed
value Smin.

In particular we see that, in order to test a hypothesis (for example,
that the data are consistent with a straight line), we must know the
magnitudes of the errors on the individual points. For example, the
same set of yi values appear in Figs. 2.3 (a) (b) and (c); whether they
are consistent with a straight line depends on the magnitude of the
errors. Without these error estimates, it is impossible to judge their
consistency with anything (compare the discussion in Section 1.1).

Some x2  distributions, which depend on the number of degrees of free-
dom, are shown in Fig. 2.6. They have the property that the expectation
value

+V (2.27)

and the variance

a2(x2)=  2u. (2.28)

Thus large values of Smin are unlikely, and so our hypothesis is probably
wrong. In this context, ‘large’ means bigger than u + lc&,  where Ic
is a number like 2 or 3. (Similarly, very small values of Smin are also
unlikely, and so again something is suspicious - cf. Section 1.6).
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In fact we can see qualitatively how large we expect Smin  to be.
Assuming that the data should in fact be consistent with a specified
line, the actual points will deviate from it because of random measure-
ment errors by ~  cri. Thus each of the n data points will contribute
about 1 to S, giving us S ~  n. If we allow the line to be free, then we
can usually adjust the gradient and intercept to give us a somewhat im-
proved fit to a given set of points, and so we expect Smin  to be slightly
less than this. (This qualitative argument does not demonstrate that
the expected value is n - 2 = v.)

More useful than the x2  distribution itself is

F”(C)  = P,(x2  > c), (2.29)

i.e. the probability that, for the given number of degrees of freedom,
the value of x2  will exceed a particular specified value c. Some of these
are presented in Table A6.3, and shown in Fig. 2.7. The relationship
between the x2  distribution and that of F  is analogous to that between
the Gaussian distribution and the fractional area in its tails.

What does F  mean? If our experiment is repeated many times, and
assuming that our hypothesis is correct, then because of fluctuations we
expect a larger value of Smin than the particular one we are considering
(i.e. a worse fit) in a fraction F  of experiments. (The interpretation is
thus analogous to that for the case of comparing some standard value
with a measured quantity whose error is known, as discussed in the
previous section.)

For example, in the situation where we are testing the linearity of the
expansion of a metal rod as the temperature is raised, let us assume that
there are 12 data points and that when we fit the expression (2.25) to
the data, we obtain a value of 20.0 for Smin. In this case we have ten
degrees of freedom (12 points less the two parameters a and b). From
Fig. 2.7, we see that the probability of getting a value of 20.0 or larger
is about 3%.

Alternatively, if we were testing the hypothesis that the rod does not
expand, then b  would be set to zero, the only free parameter is a, and
with 12 data points there would be 11 degrees of freedom. In this case
Srnin will be greater than or equal to its value when b  was allowed to be
a free parameter.

As usual, it is up to us to decide whether or not to reject the hypothesis
as false on the basis of this probability estimate, but at least we have a
numerical value on which to base our decision.
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Fig. 2.7 The percentage area in the tail of x2 distributions, for
various numbers of degrees of freedom, shown by each curve. Both
scales are logarithmic. These curves bear the same relation to those
of Fig. 2.6 as does Fig. 1.7 to the normal distribution of Fig. 1.6.

In deciding whether or not to reject a hypothesis, we can make two
sorts of incorrect decision.

(a) Error of the first kind
In this case we reject the hypothesis H when it is in fact correct. That
is, we conclude that our data are inconsistent with eqn (2.25) when
in fact the expansion really is linear. This should happen in a well-
known fraction F of the tests, where F is determined (from Fig. 2.7)
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by the maximum accepted value of &in.  But if we have biasses in our
experiment so that the actual value of the answer is incorrect, or if our
errors are incorrectly estimated, then such errors of the first kind can
happen more (or less) frequently than we expect on the basis of F. 

The number of errors of the first kind can be reduced simply by in-
creasing the limit on Smin above which we reject the hypothesis. The
only trouble is that this is liable to increase the number of errors of the
second kind, and so some compromise value of the limit must be chosen.

(b) Error of the second kind
In this case we fail to reject the hypothesis H when in fact it is false, and
some other hypothesis is correct. In our example, this corresponds to
failing to detect that the expansion is in fact non-linear. This happens
because the value of Smila accidentally turns out to be small, even though
the hypothesis H (i.e. the theoretical curve y’* that is being compared
with the data) is incorrect. In general, it is very difficult to estimate how
frequent this effect is likely to be; it depends not only on the magnitude
of the cut used for S&in and on the sizes of the errors on the individual
points, but also on the nature of the competing hypothesis. Thus, for
example, if there is a quadratic term in the temperature dependence of
the length, we are more likely not to detect it if its coefficient is small.

As a numerical example, we could test whether the following determi-
nations of the ages of fragments from the Turin Shroud are consistent:

6 4 6 f 31 years, measured in Arizona,
750 f 30 years, measured in Oxford,
676 f 24 years, measured in Zurich.

(These ages, which are quoted in Nature  337 (1989), 611, are measured
on the radio-carbon age scale, which is not quite the same as the actual
age.)

We assume  that the common age is T,  and that the individual errors
are uncorrelated. We then construct the sum of squares

Our only free parameter is T,  and so we minimise S with respect to it.
This yields T   =  689, with the corresponding Smin  = 6.4. Since there
are three data points, the number of degrees of freedom v = 3 - 1 = 2.

From tables of the x2  distribution, the probability that S&in  2 6.4
for u = 2 is only about 4%, assuming the relevant hypothesis is true.
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That is, provided the fragments are all of the same age, the measure-
ments are unbiassed, and the error estimates are correct, only about one
experiment in 25 would give results whose scatter is at least as large as
that of the observed results. This is a rather low probability and hence it
is not clear that the three measurements are consistent. One possibility
is that their experimental errors have been somewhat underestimated.

If we reject the hypothesis because of the large S,,,i,,, we may well be
making an error of the first kind, i.e. we reject the idea of a common age
for the fragments, even though this is in fact true. On the other hand,
if we accept values of &in as large as this, we are likely to make more
errors of the second kind, i.e. we accept the hypothesis in cases where
the ages are in fact different. How often this happens depends on factors
like the actual difference in ages, and the accuracy of the experiments,
as well as the Smin  cut.

If we are prepared to accept that the results are consistent, we could
quote the radio-carbon age from combining the three experiments as

689 f 16 years, where the error is obtained as 1 14% (see prob-

lem 2.1). We see that by combining the answers, we obtain an accuracy
that is better than that of any of the individual measurements. How-
ever, in view of the somewhat large &in,  this procedure may not be
justified. In the Nature publication, the authors preferred to ignore the
errors on the measurements, and to quote the unweighted average as
691 f 31 years, where the error was calculated from the spread of the
measurements.

2.9 Worked example of straight line fit

We here set out a blow-by-blow account of fitting the best straight line to
a particular set of data, consisting of the four points as specified by the
first two columns of Table 2.2. The third column of the table contains
the weight wi = l/(rz  for each data point. We see that the weight for
the third point is much smaller than that for the others. Clearly it does
not contribute much information to the fit, because of its relatively large
error.

The data are plotted in Fig. 2.8(a) (page 67). We now make  our
eyeball estimate of the best fit, to extract a reasonable value of the
gradient and intercept, with which to compare our computed values.
In drawing this line, our aim is to minimise C(~~/c$),  where di is the
deviation between the data point and the line. Thus the line can miss
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Table 2.2. Worked example of straight line fitting 
The data consists of four sets of (zi, y; f σi) values. The weights wi
are l/of. For both types of fit, zi = zi - (z),  where (z) is the relevant
average of the xi; the predicted values y/” are those for the best fit
line; and di = yi -  iyth.  For the weighted fit, S&in is x(df/af). For
the unweighted case, the equation c(df/o,“) = 2 is used to obtain σ0.

Data Weighted fit Unweighted fit

x yfa w xl yth d d2/a2  x’ yth d d2

-2 2.1 + 0.2 25 -4.325 2.01 +0.09 0.20 -3 1.98 +0.12 0.014-
0 2.4 + 0.2 25 -2.325 2.50 -0.10 0.25 -1 2.41 -0.01 0.000-

-2 2.5 + 0.5 4 -0.325 2.99 -0.49 0.96 1 2.84 -0.34 0.116
4 3.5 + 0.1 100 1.675 3.48 +0.02 0.04 3 3.27 +0.23 0.053-

1.4 = 0.183 =
Smin 2u,2

data points with large errors by a larger amount than for well-measured
points. (Compare the remarks at the end of the previous paragraph.)

The first stage of the calculation is the evaluation of the various sums
required in eqn (2.10) for the gradient b,  and in eqn (2.13) for the inter-
cept a. We obtain

(2.30)

[1] =  E(l/oi’) =  154,
\

[x] =  C(&) =  358,

[y] = x(yi/af) = 472.5, k

[xy]  = C(Ziyi/Cf) = 1315,

[x2] =  ~(zf/oi”) =  1716.

This then gives us the coordinates of the weighted centre of gravity as

(ix) = [x]/[1] = 2.325,

<y> = [y]/[1] = 3.068.

This is denoted by the star in Fig. 2.8(b).
Next we calculate b  from

b
[1][xy] - [x][y]  

= Plb21  - [x][x]

(2.31)

(2.10)
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202510 - 169155
= 264264 - 128164
= 0.245.

The various terms in the numerator and the denominator have been
written out in full, so that we can check that there are no serious cancel-
lations between them. If so, we would have to be careful that we were
performing our calculations with sufficient precision. Our example is
satisfactory from this point of view. Problems could arise, for example,
if the x values were spread over a range which was small compared with
their average value (e.g. from 6500 to 6501); this could be overcome by
redefining the origin of x.

Now we want the intercept. We have

a = (?I>  - b(x)
= 3.068 - 0.245 x 2.325

= 2.50.

(2.13)

Again there appears to be no serious numerical problem. A comparison
of a and b  with our previous eyeball estimates should be satisfactory.

We can as a check also calculate a directly, rather than via b  and
eqn (2.13). If we eliminate b  from eqns (2.8) and (2.9), we obtain

u = [x21  [PI - b4~Yl
[x21Pl  - b-34  *

(2.32)

Substitution of the numerical values of [z”] etc. then yields a = 2.50
again.

Next we want the errors on the fitted quantities. As pointed out in
Section 2.4.1, it is useful to calculate first the error on the height a' = <y>
of the line at the weighted centre of gravity, rather than at x = 0. For
this we need [x’~], so we list the values of x' = x - <x> in Table 2.2. Then

[x’~]  = 884.

A useful check is that

[x’2]  = [x2]  - [x]2/[1].

We find that our calculated values satisfy this identity
Then

and

σ(b) = 1/m  = 0.034

o(u’) = l/&j  = 0.08.



If we really want the error on a, we use eqn (2.18):

c2(u)  = a2(u’)  + ( (x>o(b))2

= 0.082  + 0.082

= 0.112.
Thus in this case, the error on the intercept at x = 0 receives more or
less equal contributions from the uncertainty on the overall height of the
line, and from that in the gradient.

In Fig. 2.8(b), we show the best fit line, and also the two lines obtained
by changing in turn either the intercept or the gradient from their best
values by their respective errors. Again we see qualitatively that the
error estimates look reasonable.

Finally we want to calculate Smin corresponding to our best line. We
first evaluate our prediction for each point, i.e.

yi’”  = 0.245~~  + 2.50, (2.33)

and then the deviation

da = yi  -  yfh.

Both yih and di are displayed in Table 2.2. Then the contributions to
Smin are df/c$, and the final value is

Smin = 1.4.

Since we have four data points and two fitted parameters (a and b),
we have 4 - 2 = 2 degrees of freedom. If our data really do lie on
a straight line, Smin is expected to follow a x2  distribution with two
degrees of freedom, whose average value is 2. Thus the observed value
of 1.4 is very satisfactory. Assuming that we would rule out values of
S min corresponding to ‘x2  area in the tail’ of 5% or lower, any value of
S min up to ~ 6 would have been satisfactory (see Table A6.3).

It is worth noting that in predicting the values yih,  which we require
for di and then Smin, we need the numerical value of the gradient to at
least two decimal places. While performing such calculations, we should
always ensure that we maintain accuracy at each stage.

We thus present our results as

b = 0.24 f 0.03,

a' = 3.07 f 0.08,

a = 2.50 f 0.11, 
(2.34)

S min = 1.4 for two degrees of freedom. j

What would have happened if the errors on the y values had been
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Fig. 2.8 (a) The four data points (zi,  yi  f ai).  Readers are invited
to cover up (b), and to draw on this diagram their estimate of the
best straight line fit to these points. (b) The heavy line is the least
squares best fit to the data points, with the individual errors ai
being taken into account. The best line passes through the weighted
centre of gravity of the data points (shown as a star). The two
lighter lines are for the intercept or the gradient being increased
by one error from their best value. (c) The heavy line is the least
squares best fit, when the errors ai are ignored. The errors shown
on the y  values are derived from the scatter of the four points from
this best line. The lighter lines are equivalent to those in (b). The
star is the location of the unweighted centre of gravity of the data.
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unavailable? As explained in Section 2.4.2, we assume that they are all
equal to some value ~0,  which we estimate from the observed scatter of
the data points about the fitted line. We start, however, by temporarily
setting 00  equal to unity. Instead of (2.30), we now obtain

[1] = 4,

[x] = 4,

[y] = 10.5,

1

(2.35)

[xy] = 14.8,

[x2]  = 24.
Then the new (unweighted) centre of gravity is given by

(4  = 1,

<y> = 2.625. 1
The gradient is

(2.36)

b = 4 x 14.8 - 4 x 10.5 0.215 
4 x 24 - 4 x 4  

and the intercept

a = 2.625 - 0.215 x 1 = 2.41.

The predictions yi* and the deviations di for this new line are shown
in the right hand side of Table 2.2. At this stage, we remember that 00
is unknown, and so

Smin = (xdf)/a; = 0.183/&.

We set this equal to its expected value of 2, the number of degrees of
freedom, and obtain

CT0 = 0.30.

This is our estimate of the error on each of the y values.
This value of (~0  does not affect the determination of <x>, <y>, a and

b that we have just obtained with the assumption that ~0  = 1, since it
exactly cancels in the calculations.

Finally we are ready to obtain the errors on a and on b. We need
2; = xi - <x> (see the right hand side of Table 2.2), to calculate

[x’2]  = 20.

Then σ(b) = 0.30/a  = 0.07

and a(d)  = 0.30/A  = 0.15.

Also u2(u)  = u2(a’) + ((x)a(b))2

= o.152  + o.072

= 0.162.
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Thus in this case, the results (see also Fig. 2.8(c)) are

b = 0.22 f 0.07,

a' = 2.62 f 0.15,

i

(2.37)

a = 2.41 f 0.16,

and of course we have no Smin with which to make a meaningful test of
whether the points lie on the straight line.

By looking at Fig. 2.8(b) and (c), we can compare these results with
the earlier ones (eqns (2.34)); we see that the best fit lines are signif-
icantly different. For the unweighted fit, all data points are considered
equally, even though the third point had a much larger error than the
others. Not surprisingly, weighting each point by the correct factor has
an effect when the individual errors are not all equal. Clearly we should
if at all possible make use of these errors, especially as they also enable
us to test the hypothesis that the points do in fact lie on a straight line.

2.10 Summary of straight line fitting

We finally summarise the necessary steps for performing a straight line
fit to a series of data points.

(i) Plot the data points on graph paper. This enables us to check that
the data looks sensible and to obtain a reasonable estimate of the
intercept and gradient.

(ii) Use eqns (2.10) and (2.13) to determine the gradient and intercept.
(iii) Find the weighted mean position (x) from eqns (2.12) and (2.11),

and then use eqns (2.16) for the errors on the height of the graph
at (2)  and on the gradient.

(iv) Compare the values of the parameters obtained in (ii) and in (i),
and also see whether the error estimates look not unreasonable.

(v) Determine the value of Smin  from eqn (2.7), using the values of a
and b from stage (ii).

(vi) Determine the number of degrees of freedom v from eqn (2.26). Be
careful to distinguish between free parameters, which are allowed to
vary in the fit, and which reduce the number of degrees of freedom;
and fixed  parameters, which do not. Thus a general straight line
(eqn (2.2)) has wot free parameters, unless either or both of a and
b are fixed by the theory, in which case there will be only one or
no free parameters respectively.

(vii) Look up the x2  table for our number of degrees of freedom in order
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to find the probability of obtaining a value of Smin  as big as we
observed, or larger.

(viii) If this probability is too small, then realise that the results for a
and b are meaningless.

Since the mathematical procedure for fitting straight lines is not only
tedious, but also identical in principle for all sets of data, it is well worth
writing a computer program to perform it, if you are going to be involved
in doing it more than a couple of times. Even with such a tested and
bug-free program, however, steps (i) and (iv) must not be omitted.



Problems

2.1

2.2

(i)

(ii)

2.3
(i)

(ii)

2.4

Derive the formula (1.35) for combining two measurements
al f ~1  and u2  & 02  as follows. Assume that they are both
consistent with a value &,  and construct an appropriate sum
of squares S to test this hypothesis. Then minimise S with
respect to 6 to obtain the best value a.

1

The error on a is given by
( >
i@

--
2. Check that this gives

the result (1.36).
Show that you obtain the same result for a  by constructing

a linear combination cy al + (1 - a)u,  of the measurements al
and ~2, with α  chosen such that the error on this answer is
as small as possible. What is the magnitude of this minimum
error?

Two different measurements of the mass of a given star produce
the results of 0.9 f 0.1 and 1.4 f 0.2 solar masses. Decide
the extent to which they are consistent by the following two
methods.

Use a least squares method to test the hypothesis that they
are consistent with some arbitrary value, and then look up the
relevant probability in x2  tables.

Look up the fractional area in the tails of a normal distribution,
for a suitably constructed variable.

Solve, eqns (2.8) and (2.9) for the gradient b,  and check that
your result agrees with eqn (2.10).

Use eqn (2.16) for the error on a', to show that it is equal
to a/$i  for the case where the error on  y is cr for all the n
measured points.

In a High Energy Physics experiment a beam of protons is di-
rected from the left onto a small target. The interactions pro-
duce secondary particles, whose y  coordinates are measured by
a series of detector planes accurately situated at x = 10, 14, 18,
22, 26 and 30 cm downstream of the target. The first and last
planes have an accuracy of f 0.10 cm for the y  measurements,
whilst that for the other four planes is Ifi  0.30 cm.
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(i)

(ii)

Least squares fitting

The following y  coordinates were obtained for the six planes
after one specific interaction: 2.02, 2.26, 3.24, 3.33, 3.92 and
4.03 cm respectively. We want to determine whether these are
consistent with lying along a straight track given by y = a + bx. 

Perform a least squares straight line fit to the data: find the
weighted mean x position <x>, the intercept a, the slope b and
the height a' at x = <x>. Determine Smi,,  and the number of
degrees of freedom V, and look up the probability of obtaining
a value of Smira larger than your value for the given V.

Decide whether this track is consistent with coming from the
target, which is situated at x = 0, and extends from y = -1 cm
to y =  +1 cm, as follows. Determine the accuracies with which
a' and b are determined, and then use the relation y  = a' + bx'
(where x' =  x - <x>) to calculate the error E on the extrapolated
position y,.,  of the track at the x' value corresponding to x = 0.
Then decide whether, given y0  and c, the track is consistent
with being produced in the target.

(iii) Calculate the value of Smin for the comparison of the straight
line y = 0.1x + 1.0 cm with the data. (Give yourself a black
mark if this is smaller that the Smin  that you obtained in part
(i). Why?) How many degrees of freedom are there?

-

(iv) How would your answers to part (i) have changed if the accu-
racies of determining the y coordinate had been taken as + 0.01
and f0.03  cm, rather than f0.10  and f0.30  respectively, but
all other numbers had remained as they were?

2.5 The following data on the number N of observed decays per
microsecond (/AS)  were obtained with a short-lived radioactive
source.

t = 1 0 2 0 3 0 4 0 5 0 6 0 8 0 1 0 0 (11s)

N =  6331 4069 2592 1580 1018 622 235 1 0 9

The expected number of decays is given as a function of time
by the relationship N = N, exp (-i/r)  , where T is the lifetime
and N, the number of decays per microsecond at t  = 0. By
fitting a straight line to a graph of ln N against t,  and taking
the error for each observed N as being given by fi,  determine
r and its error.
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Useful formulae

It is very useful to make a short list of formulae summarising each
subject you learn. You can then look over this from time to time to
remind yourself of the formulae, to ensure you remember what they
mean and to what situations they are applicable, etc. If it turns out
that you have forgotten, then you can go back to the main text to
rectify the situation. Another advantage is that a short list manages to
put into perspective the amount of material involved in the topic; if all
the formulae can be written on a single page, the total subject matter
to learn cannot be too vast. Finally, by making a list yourself, you have
to go over the subject to decide what are the important points; this in
itself is a valuable exercise.

My own list would be as follows.

(1) For a set of N measurements  {zi},
Mean L = IDzi N (1.2)

Variance s2  = C( xi - z)2/(N  - 1) (1.3')

Error on the mean u = S/dN

(2) Gaussian

y = & e&+  - d2/2u2>l (1.10)

Mean p, variance a2

(3) Propagating uncorrelated errors
a=bkc 4 = a;  + a: (1.20)

f = zy or z/y (y)’  = (:)‘+  ($)’  (1.27)

f = f(%~2,...,%) u; = c ($7i)2 (1.30)

(4) Combining experiments with results {ai f a;}

a =  x(ai/+)/  C(l/4)

l/a2  = C(l/(T3)

(1.35)

(1.36)
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(5) Best fit of straight line y = a + bz

b = MZYI - MY1
Pl[~:“l - 14 14

a = (Y> - w
02(u’)  = l/p]

cT2(b)  = 1/[z’2]

where a' is the intercept at x’ = 0, and 2’  = x - (2)

s=C(
US bxi- 9; 2

gi >
u=n-p

7
XL = u

a2(x2)  = 2u

(2.10)

(2.13)

(2.16)

(2.16)

(2.7)
(2.26)

(2.27)

(2.28)
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Partial differentiation

We already know about differentiation in situations where one variable
(for example z) is a function of one other (say, x).  Thus if

z = x sin x,
dz
z = x cos x + sin x. 

If we have functions of more than one variable, ordinary differentiation
is replaced by partial differentiation. This involves pretending that, of
all the independent variables, only one is allowed to vary at a time, and
all others are temporarily kept fixed. Thus if our function is

z = x sin y
we can calculate two partial derivatives $$  and g. (Partial derivatives
are always written with curly ds, instead of the straight ds of ordinary
derivatives). Then for $$, x is treated as a variable, but y  is regarded
as a constant, so

a.? .
- = sin y.
da:

Similarly for $$j, x is constant but y is the variable. Hence

a.2
- = x cos y.
dY

In order to help understand what is involved, we can regard z  as giving
the height of a hilly countryside as a function of the two coordinates x
and   y,  respectively the distances east and north of our starting point.
Then $$  is the gradient at any point if we walk along a path going
due east over the hillside. Similarly E is the gradient as we travel at
constant x.

In Chapter 2, we consider the straight line
y th = a + bx,

where yrh is the predicted height of the line at the position x. Now
usually we would regard x as the only variable on the right hand side, but
since we want to consider lines of all possible gradients and intercepts, in
our case a and b are the relevant variables. There are thus three possible
partial derivatives 2,  !$  and 2.
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Fig. A2.1 Illustration of the three partial derivatives for the func-
tion y = a + bx, represented by the solid line. (a) 2 = 1 gives
the change ∆y in y for a change in intercept but for the same gra-
dient, represented by the dashed line. At constant x, ∆y = ∆a. 
(b) $$  = x gives the change in y for a change in gradient but with

the intercept unchanged. At constant x, ∆y = x∆b. (c) 2 = b
gives the change in y for a change in x, keeping the line fixed. Then

∆y = b∆x. 

Thus 2 tells us that rate of change of y  with respect to a, at fixed b 
and fixed x. We obtain

dy 1.-=
da 

This means that, if we change the intercept of the line by ∆a but keep
the gradient constant, the change in y at a particular x is ∆y = ∆a.
Similarly

which means that, if we alter the gradient but not the intercept, the
change in y  at any x is given by ∆y = x∆b.

We do not require it in Chapter 2, but we can also calculate

a’  b,-=
dx 

which tells us that for a fixed straight line (i.e. a and b constant), the
change in y as we vary x is b∆x.  All three partial derivatives are shown
graphically in Fig. A2.1.

Thus the partial differentiation of a function of several variables is no
more complicated than the ordinary differentiation of a function of one
variable.

Just as the stationary value of a function z(x)  requires that the first
derivative 2  = 0, so for a function of two variables z(x, y), it is necessary
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to have both partial derivatives zero, i.e.

and

a.2-=
da:

0

dz
-=

dY
0.

I
In general this will not ensure that we have a minimum rather than a
maximum or something more complicated. For the case of the x2  fit
of a line to a set of data points, however, the stationary value that we
determine when we set the derivatives of eqn (2.6) equal to zero is the
minimum of S.
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The binomial distribution

In Section 1.5 we discussed the Gaussian distribution. In this and the
next appendix, we describe the binomial and Poisson distributions.

Let us imagine that we throw an unbiassed die 12 times. Since the
probability of obtaining a 6 on a single throw is $, we would expect on
average to end up with two 6’s. However, we would not be surprised if
in fact we obtained 6 once or three times ( or even not at all, or four
times). In general, we could calculate how likely we are to end up with
any number of 6’s, from none to the very improbable 12.

These possibilities are given by the binomial distribution. It applies
to any situation where we have a fixed number N of independent trials,
in each of which there are only two possible outcomes, success which
occurs with probability p,  or failure for which the probability is 1 - p.
Thus, in the example of the previous paragraph, the independent trials
were the separate throws of the die of which there were N = 12, success
consisted of throwing a 6 for which the probability p  = i, while failure
was obtaining any other number with probability 8.

The requirement that the trials are independent means that the out-
come of any given trial is independent of the outcome of any of the
others. This is true for a die because what happens on the next throw is
completely unrelated to what came up on any previous one. In contrast,
if we have four red balls and two black balls in a bag, and consecutively
take out two balls at random, the chance of the second being black is
influenced by whether the first is red or black; in the former case, the
probability is & while in the latter it is 2. (On the other hand, if we
put the first ball back in the bag before removing the second, the trials
would be independent.) 

For the general case, the probability P(r)  of obtaining exactly r  suc-
cesses out of N attempts is

P(r) =  N!
r!(N  - r)!

p’(1  - py-’

for values of r  from 0 to N inclusive. This is because the pr term is
the probability of obtaining successes on r  specific attempts, and the
(1 - p)  N-r factor is that for failures on the  remaining N - r trials.
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But this corresponds to only one ordering of the successes and failures;
the combination of factorials then give the number of permutations of r 
successes and N - r failures. It is important to distinguish between p,
the probability of success on a single trial, and P(r), the probability of
obtaining r successes out of N trials.

From the equation above, the probability of no 6’s in 12 trials is

P(O)=& (~)“(~)12~ (;)12=,.,1
(remember that 0! is 1). Similarly the probability of one 6 is

The extra factor of 12 arises from the fact that the probability of obtain-
ing a 6 on the first throw, followed by none in the remaining 11 attempts,
is (*) (C)“. However, in order to obtain just one 6 during the sequence,
it could occur on any of the throws, rather than necessarily on the first.
Since there are 12 such opportunities, the total probability P(1) is 12
times the probability of obtaining 6 on only the first throw.

In our probability for no 6’s, there is no such extra factor, since the
only possibility is for every single throw to give a non-6. In contrast,
if we ask for two 6’s, these could occur in any of the 12 throws, and
there are 66 ways this could happen. Our equation correctly gives the
probability as

P(2) = ~(~)2($o~66($)2($o

= 0.30.
We can thus use the equation to calculate all the probabilities from

P(0) to P(12) for our die example. These are plotted in Fig. A3.1(a). 
As is necessarily the case, these probabilities add up to unity. This is
because, if we throw a die 12 times, we are absolutely sure to find that
the number of 6’s is somewhere in the range 0 to 12 inclusive.

For the binomial distribution, the expected number of successes ? is

F = CrP(r)

with P(r) as given earlier. A fairly tedious calculation gives

1;=Np
which is hardly surprising, since we have N independent attempts, each
with probability p of success. Even more boring algebra gives the vari-
ance g2 of the distribution of successes as

a2 = Np(1 - p). 
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Fig. A3.1 The probabilities P(r), according to the binomial dis-
tribution, for r successes out of 12 independent trials, when the
probability p of success in an individual trial is as specified in the
diagram. As the expected number of successes is 12p, the peak of
the distribution moves to the right as p increases. The RMS width
of the distribution is dm and hence is largest for p = 4.
Since the chance of success in the p = 4 case is equal to, that of
failure for p = 3, the diagrams (a) and (d) are mirror images of
each other. Similarly the p = 3 situation shown in (c) is symmetric

about r = 6 successes.

Thus the expected number of successes of our die-throwing experiment
was 12 x (1/6) = 2, with a variance of 12 x (1/6) x (5/6) = 5/3 (or a
standard deviation of m).  This tells us that we cannot expect that
the number of successes will be much larger than a couple of times @
above 2, i.e. more than five 6’s is unlikely (see Fig. A3.1(a)).

For the same experiment of throwing a die 12 times, we could have
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changed the rules, and regarded either 5 or 6 as a success. Thus the
probability of success is now 2/6 = 1/3, and our formula for P(r) will
give us the new set of probabilities for obtaining any specified number r
of successes out of N = 12 attempts. These are plotted in Fig. A3.1(b).
Also shown in Fig. A3.1 are the values of the probabilities P(r) of r
successes out of 12 trials for the cases where p = 1/2 (e.g. any even
number is a success), and for p = 5/6 (e.g. anything but a 1 is a
success).

Other examples where we would use the binomial distribution (the
second one being approximate) are as follows.

(i) We do 20 experiments in a year. We expect that 95% of the ob-
served results should be within 2 standard deviations of the correct
value. How likely are we to have all experiments within 2 standard
deviations? Or 19 experiments?

(ii) A large school consists of 55% boys and 45% girls. Two students
are chosen at random. What are the probabilities that they are
both boys; a boy and a girl; or both girls?

The binomial distribution is thus useful for calculating probabilities
of the various possible outcomes of an experiment consisting of a fixed
number of repeated trials, provided that the probability of success of an
individual trial is known and constant.

Situations in which the number of trials N becomes very large are
interesting. If as N grows the individual probability p remains constant,
then the binomial distribution becomes like the Gaussian distribution
(see Fig. A4.2) with mean Np and variance Np(1 - p). On the other
hand, if as N grows, p decreases in such a way that Np remains constant,
the binomial tends to a Poisson distribution, which we discuss in the
following appendix.
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The Poisson distribution

The flux of cosmic rays reaching the Earth is about 1 per cm2  per
minute. So if we have a detector with an active area of ~ 20 cm2,  we
might expect on average 3.3 cosmic rays for each 10 second interval. If
we actually did the experiment and recorded how many particles were
detected in consecutive 10 second intervals, we would clearly never ob-
serve 3.3, but would get numbers like 3 or 4, and sometimes 1 or 2 or 5
or 6, and occasionally none or 7 or more. We could produce a histogram
showing how many times (nr) we observed exactly r  cosmic rays in our
10 second intervals. By dividing by the total number of intervals T, 
we could convert n, into the corresponding probabilities P,..  For large
enough T,  and assuming certain conditions are satisfied (see below), this
distribution of probabilities should approximate to the Poisson distribu-
tion with the corresponding average value λ  = 3.3.

The Poisson distribution arises when we observe independent random
events that are occurring at a constant rate, such that the expected
number of events is λ.  The Poisson probability for obtaining r  such
events in the given interval is

A’
Pr = --p+ (A4.1)

where r  is any positive integer or zero. Thus the Poisson distribution
has only one parameter λ.  Some distributions corresponding to different
values of λ  are shown in Fig. A4.1.

It is important that the events are independent, which means that the
observation of one such event does not affect whether we are likely to
observe another event at any subsequent time in the interval.

The cosmic ray situation described above is likely to satisfy these re-
quirements. Cosmic rays seem to arrive at random, and their average
rate of arrival is more or less constant. The distribution would not be
Poisson if our counter had a significant dead-time, such that it was inca-
pable of recording a cosmic ray that arrived a short time after another,
since this would violate the independence requirement. With modern
counters and electronics, any dead-time should be very short compared
with the average time between cosmic rays, and so again the effect can
be ignored.
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Fig. A4.1 Poisson distributions for different values of the parameter
λ. (a) λ = 1.2; (b) λ = 5.0; (c) λ = 20.0. Pr is the probability of
observing  events. (Note the different scales on the three figures.)
For each value of λ, the mean of the distribution is at λ, and the
RMS width is a.  As λ increases above about 5, the distributions

look more and more like Gaussians.

In a similar way, the Poisson distribution is likely to be applicable to
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many situations in which we are counting independent events in a fixed
time or space interval.

For the probability distribution (A4.1), we can calculate the average
value of r, as C rP,. This turns out, not too surprisingly, to be λ. We
can also calculate the variance of the distribution, as C(r - X)“p,.;  this
again is λ.  Thus, if in a Poisson-type situation we observe N events, we
would estimate λ as N, and the error as u = fi = fi. This is the
basis of the well known N f fi recipe that applies to statistical errors
in many situations involving the counting of independent events during
a fixed interval.

The Poisson distribution also arises as the limit of the binomial dis-
tribution. That is, for large N and small p,  the binomial distribution
looks very much like a Poisson distribution of mean λ  = Np.

Thus if we have a very intense beam of B particles incident on a thin
target, such that the probability p of any one of them interacting is
very small, then the number r  of observed reactions in fact is binomially
distributed (B trials, each with probability p of “success”). However,
for small p, this will give values of P,.  that are indistinguishable from
those of a Poisson of mean Bp.

In a similar way, if we select samples of 1000 people, and count the
number r  with some fairly rare blood group, the probability P,. of ob-
taining different values of r  should again in principle be determined by
the binomial distribution. But for any practical purpose, the Poisson
distribution with mean 1000p (where p is the probability of having the
specified blood group) will give accurate enough values of P,. .

A final useful property is that for large λ,  the Poisson probabilities
are very like those obtained for a Gaussian distribution of mean λ and
variance λ.  Thus in this situation the values of P,. can be calculated
somewhat more easily from the Gaussian rather than the Poisson distri-
bution. Even more important is the fact that many statistical properties
are much simpler for Gaussian distributions. Thus, for example, the sum
Smin of eqn (2.7) is expected to follow the x2 distribution provided that
the errors ui are Gaussian distributed. If we in fact have a situation
where the distribution is expected to be Poisson (e.g. for the number of
particles scattered through a given angle in a particular nuclear physics
experiment), then provided that the number n of such events is large
enough, the approximation to a Gaussian will be adequate. In this con-
text, n larger than about 5 is usually taken as sufficient.

The relationship among the binomial, Poisson and Gaussian distribu-
tions is shown in Fig. A4.2.
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Fig. A4.2  The relationships among the binomial, Poisson and Gaus-
sian distributions.

Detectors for charged nuclear particles provide an important applica-
tion of the Poisson distribution. Many such devices rely on the particles
creating photons as they pass through the detector, and these in turn
release electrons in a photo-multiplier, which produces the required sig-
nal. For a large number of particles successively incident on a given
counter, the numbers of such photoelectrons closely follow a Poisson
distribution. If the counter is such that their mean number is low, there
will be a significant probability that, because of fluctuations, in a given
case the number of electrons released is zero, with the result that the
counter gives no signal and the corresponding original particle is not
detected. For example, for an average of 3.1 electrons, the probability
of producing none is

PO  = c3.1  = 4.5%.

Hence the efficiency of the counter for detecting particles can be at best
95.5%.
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Student’s t  distribution

In Section 1.6, we considered the quantity
X-P

f=y (1.16)

where x k u is a measurement which is Gaussian distributed, and which
we want to compare with some expected value p. Then, in order to
assess the significance of a non-zero value of f,  we look up some tables
of the area in the tails of the relevant probability distribution. This too
will be Gaussian, if u is the correct value of the experimental error.

Very often, instead of the true value of 0, we merely have an estimate
u based on the observed spread of the measurements xi.  For a large
number N of measurements, u should be close to 6, and the use of
the Gaussian will be approximately correct. However, for only a few
observations, u and CT can differ, and

X-P
f’= --ii- (A5.1)

follows a Student’s t  distribution, whose exact shape depends on N.
Because of fluctuations in the estimate u in the denominator, Student’s
t distributions are wider than the Gaussian (see Fig. A5.1),  and the
effect is more pronounced at small N. Thus for a given value of f  or
f ' , the areas in the tails of Student’s t  distributions are larger than that
for a Gaussian. A table of these fractional areas is given in Appendix 6;
the number of degrees of freedom v is N - 1 (one measurement is not
sufficient to estimate a spread).

Both from Fig A5.1 and from Table A6.1, we can see that the Gaussian
can be regarded as the limit of Student’s t  distributions as N becomes
very large. For small N the difference can be important. Thus, for
example, the probability of obtaining | f |   > 3 is 0.3% for a Gaussian
distribution, but the corresponding number is 3% for Student’s t  with
N = 6, or  20% for N = 2.

In using eqn (A5.1), it is important to realise that if x is the mean
of N measurements, then u should be an estimate of the error on that
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Fig. A5.1 Comparison of Student’s t  distributions for various val-
ues of the number of observations N,  with the Gaussian distribu-
tion, which is the limit of the Student’s distributions as N  tends to

infinity.

mean. This will as usual be a factor of I/??  smaller than the spread of
the xi values, i.e.

u = SIJN

where 
1s2  = -

N - l n
xi - q2. (1.3')

As a specific example, suppose someone says he has an IQ of 150. He
is given three tests on which he scores 128, 143 and 113. What can we
deduce about his claim? The average score is 128, and the estimated
standard deviation s as deduced from the three measurements is 15, so
the accuracy of the mean u is 15/A = 9. To test the suggestion that
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the IQ is at least 150, we construct

f '  =  
9

128 - 150 
= -2.5.  

We then look up the table of Student’s t  distribution for two degrees of
freedom, since we have three measurements. We find that the probability
of f '  being -2.5 or smaller is -6%. Thus there is a non-negligible
probability that the person’s claim was correct. If, however, we had
incorrectly used the Gaussian distribution, the relevant probability is
around i%,  and we would have concluded that an IQ of 150 or more
was very unlikely.



Appendix 6

Statistical tables

This appendix contains tables relevant to the Gaussian, Student’s t 
and x2  distributions.

Table A6.1 gives the fractional area f  in one tail of the Student’s t 
and of the Gaussian distributions, i.e.

f(r)  = /=  P(x)dx (A6.1)

where P(z)  is the relevant normalised distribution, and we are interested
in the fractional area beyond a value r  of the variable x.  For the Gaussian
distribution,

P(x) = & exp(-X2/2) (A6.2)

where for a measurement m f ~7 when the true value is m,

m-mm,x =
(T 

i.e. it is the number of standard deviations
Student’s t, 

m-m0
x = u

(A6.3)

by which m exceeds mo. For

(A6.4)

where u is the estimated standard deviation of m, based on the spread
of N  observations. These distributions depend on the number of degrees
of freedom V, which is N  - 1.

As an example of using this table, we can look up the probability of
being at least 2.0 standard deviations above the correct value. It is 2.3%
for the Gaussian distribution, while for Student’s t  it is 3.7% for v = 10,
or 15% for v = 1.

The Gaussian and Student’s t  distributions are all symmetric about
x = 0. Thus the areas for x > r  are identical with those for x < -r. 
Similarly if we are interested in the fractional area in both tails of the
distribution (i.e. the area for |x|  > r), the numbers in the table should be
doubled. Thus, according to the Gaussian distribution, the probability
of deviating from the correct value by at least 2 standard deviations is
4 . 6 % .

Some of the information in Table A6.1 for the Gaussian distribution
is displayed in Fig. 1.7.
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Student’s t  distributions have the property that, as the number of
degrees of freedom increases, they tend to the Gaussian distribution;
the numbers in Table A6.1 are consistent with this.

For further information, see Section 1.5 for the Gaussian distribution,
and Appendix 5 for Student’s t. 

Table A6.2 is the inverse of Table A6.1, in that it gives the values of
r corresponding to a specified fractional area f (r) in the upper tail of
the distributions. As in the previous table, the entries correspond to
Student’s t with various numbers of degrees of freedom u, and to the
Gaussian distribution. For example, there is only a 1% probability of
being more than 2.3 standard deviations above the correct value for a
Gaussian distribution, but for Student’s t  the corresponding number is
7.0 standard deviations for v = 2, or 2.5 for v = 20.

Finally Table A6.3 gives the fractional area in the upper tail of the x2
distribution, for v degrees of freedom. (The x2  distribution exists only
for positive values of the variable, and hence is not symmetric about zero
(see Fig. 2.6).) This table corresponds in principle to Table A6.2 for the
Gaussian and Student’s t  distributions. Thus there is a 5% probability
of x2  exceeding 3.8 if v = 1, or 18.3 if v = 10. Some of the information
in this table is displayed graphically in Fig. 2.7.

The use of x2 distributions is described in Section 2.8.
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Random numbers

Random numbers have an amazing variety of uses. Apart from the
obvious one of specifying a random sample from a large population,
they can be used for integrating complicated functions of one or more
variables; for obtaining a value of π;  or for simulating experimental er-
rors. Further details can be obtained, for example, from Chapter 6 of the
book Statistics for Nuclear and Particle Physicists by Lyons (Cambridge
University Press 1986, ISBN 0 521 37934 2).

If you need a lot of random numbers, you can obtain them from a
computer. For a smaller problem, such as that of Section 1.11.3, you
can push the random number button on your calculator as many times
as necessary, or use tables of random numbers. Those presented in table
A7.1 were obtained as part of a sequence generated by a computer using
an algorithm from the NAG Program Library.
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