


Uncertainties in single-variable
functions

The functional approach to obtain the uncertainty in a function Z = f (A),
when A has been measured to be Ā ± αA:

αZ = ∣∣ f
(

Ā + αA
) − f

(
Ā
)∣∣ .

This is shown schematically in the figure.

Ā
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An uncertainty αA in the variable A maps
directly into an uncertainty αZ in the function
Z = f (A).

Assuming small uncertainties, such that the function can be approximated
as a straight line in the vicinity of Ā, then the calculus-based approximation to
this result is:

αZ =
∣∣∣∣dZ

dA

∣∣∣∣ αA.

Table 1 Results for the propagation of uncertainties in single-variable func-
tions. The results for the trigonometric functions assume that the angles and
their uncertainties are in radians.
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Preface

This book grew out of the process of revamping the first-year practical course
at the physics department at Durham University. During the restructuring of
the laboratory course, we noted the significant changes in the skill set of the
student cohort over the previous decade. We searched for a book that could be
a recommended text for the treatment of uncertainties. There is no shortage of
books which deal with uncertainties in measurements and error analysis. Most
of these books treat error analysis in the traditional, old-fashioned approach
which does not take into account modern developments—indeed, error propa-
gation is often treated as an exercise in calculus of many variables. In modern
laboratories computers are used extensively for data taking and analysis, and
students now have access to, and familiarity with, spreadsheets for manipula-
tion of data. This book is written assuming that most of the number crunching
will be done by computer. Traditional textbooks have appendixes which list,
e.g. Gaussian integrals, cumulative distribution functions, tables of chi-squared
distribution likelihoods, and so on. Our emphasis is on calculating the relevant
numbers within routinely available spreadsheet software packages. In contrast
to traditional books, we have decided to produce a hands-on guide book: key
points illustrated with worked examples, concise and in a handy format—
sufficiently user-friendly that students actually bring the book along and use
it in the teaching laboratory.

The scope of this book is to cover all the necessary groundwork for lab-
oratory sessions in a first- and second-year undergraduate physics laboratory
and to contain enough material to be useful for final-year projects, graduate
students and practising professional scientists and engineers.

In contrast to the mathematically rigorous treatment of other textbooks
we have adopted a ‘rule of thumb’ approach, and encourage students to use
computers to assist with as many of the calculations as possible. Last century
if a student had knowledge of an angle and its uncertainty, and was testing
the validity of Rutherford’s scattering law with its sin−4(θ/2) dependence, the
suggested approach to error propagation was to turn this into an exercise in
differentiation. Nowadays, a student can create a spreadsheet, calculate the
value of the function at the desired angle, at the angle+error bar, and deduce the
uncertainty in propagation through Rutherford’s formula much more quickly.
Throughout the book we encourage a functional approach to calculations, in
preference to the calculus-based approximation. A large number of end-of-
chapter exercises are included, as error analysis is a participation, rather than a
spectator, sport.

The only prerequisite is suitably advanced mathematics (an A-level, or
equivalent) which is a compulsory qualification for studying physics and
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engineering at most universities. Although written originally for use in a
physics laboratory we believe the book would be a useful hands-on guide for
undergraduates studying the physical sciences and engineering.

A preliminary version of this book (‘the little red book’) was used by
more than 1500 students following the Discovery Skills module at Durham
University; we are grateful to all of those who helped identify and eradicate
typographical errors, inconsistencies and sources of confusion.

Several colleagues involved in the teaching laboratories at Durham have
contributed to this book via a number of discussions. We would like to record
our gratitude to Del Atkinson (we realise the book is ‘full of errors’), Richard
Bower, David Carty, Paula Chadwick, Simon Cornish, Graham Cross, Nigel
Dipper, Ken Durose, David Flower, Douglas Halliday, Michael Hunt, Gordon
Love, John Lucey, Lowry McComb, Simon Morris, Robert Potvliege, Steve
Rayner, Marek Szablewski, and Kevin Weatherill. Many colleagues kindly
donated their time to proofread various chapters, and we are indebted to them
for this service, including Charles Adams, Matthew Brewer, Paula Chadwick,
Stewart Clark, Malcolm Cooper, David Flower, Patrick Hase, Jony Hudson,
Martin Lees, Phillip Petcher, Jon Pritchard, and Marek Szablewski. Simon
Gardiner gave invaluable TEX advice. For any remaining flaws or lack of
clarity the authors alone are responsible. While performing error analysis in
research, the authors have benefited from discussions with Ed Hinds, Jony
Hudson, Clemens Kaminski, Ben Sauer, Peter Smith, Derek Stacey, and
Duncan Walker. Damian Hampshire pointed out that ‘truth’ should be sought
in the department of theology, not an error-analysis book. Simon Cornish
and Lara Bogart kindly provided us with data for some of the figures. We
are grateful to Bethan Mair and Tony Shaw for advice on writing a book,
Mike Curry for providing food and lodging, and Stewart Clark and Marek
Szablewski for eradicating the loneliness of long-distance runs.

We would like to thank our families for support and encouragement, and
Sönke Adlung and April Warman at OUP for their enthusiasm and patience.

December 2009 Durham and Warwick
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sciences 1

1.1 The importance of error analysis 1

1.2 Uncertainties in measurement 2

1.3 Precision of measurements 5

1.4 Accuracy of measurements 6

Chapter summary 7

What is the role of experiments in the physical sciences? In his Lectures
on Physics, Volume 1, page 1, the Nobel Laureate Richard Feynman states
(Feynman 1963):

The principle of science, the definition, almost, is the following: The test of all
knowledge is experiment. Experiment is the sole judge of scientific ‘truth’.

We will emphasise in this book that an experiment is not complete until an
analysis of the uncertainty in the final result to be reported has been conducted.
Important questions such as:

• do the results agree with theory?
• are the results reproducible?
• has a new phenomenon or effect been observed?

can only be answered after appropriate error analysis.

1.1 The importance of error analysis

The aim of error analysis is to quantify and record the errors associated
with the inevitable spread in a set of measurements, and to identify how we
may improve the experiment. In the physical sciences experiments are often
performed in order to determine the value of a quantity. However, there will
always be an error associated with that value due to experimental uncertainties.
The sources of these uncertainties are discussed later in this chapter. We can
never be certain what the exact value is, but the errors give us a characteristic
range in which we believe the correct value lies with a specified likelihood.

These ideas do not just apply to the undergraduate laboratory, but across
the entire physical sciences at the very fundamental level. Some of the so-
called fundamental constants, in addition to other physical constants, have been
determined experimentally and therefore have errors associated with them. For
fundamental constants the best accepted values can be found from experiments
performed at Government laboratories such as NIST (National Institute of
Standards and Technology)1 in the USA and the National Physical Laboratory 1http://www.nist.gov/index.html
(NPL)2 in the UK. 2http://www.npl.co.uk

As an example, the currently accepted values (the first number), and their
errors (the number after the ±), of Avogadro’s constant, NA, and the Rydberg
constant, R∞, are:

http://www.nist.gov/index.html
http://www.npl.co.uk
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NA = (6.022 141 79 ± 0.000 000 30) × 1023 mol−1,

and

R∞ = (10 973 731.568 527 ± 0.000 073) m−1.

Note that although the Rydberg constant is known to an impressive precision
(one part in 1011) there is still an uncertainty in its value.3 The only constants

3An alternative way of writing the error is:
R∞ = 10 973 731.568 527 (73) m−1, altho-
ugh we will exclusively use the ± convention
in this book. which do not have an error are those that have been defined. One of the most

common is the speed of light in a vacuum, c = 299 792 458 m s−1 (exact).
A full list of the physical constants and their errors is reviewed periodically
by the International Council for Science: Committee on Data for Science
and Technology (CODATA) task group on fundamental constants. A self-
consistent set of internationally recommended values of the basic constants
and conversion factors is derived from all the relevant data available, and
is periodically updated. The latest review is available on the fundamental
constants web-page hosted at NIST.44http://physics.nist.gov/cuu/Constants/

1.2 Uncertainties in measurement

How should we interpret an uncertainty in a measurement? Reporting a
quantity as the best estimate ± the error should be regarded as a state-
ment of probability. The scientists who performed the measurements and
analysis are confident that the Avogadro constant is within the range
6.022 141 49 ×1023 mol−1 ≤ NA ≤ 6.022 142 09 ×1023 mol−1. They cannot
be certain that the Avogadro constant is within the limits quoted, but the
measurements lead them to believe that there is a certain probability of its
being so. In later chapters in this book we will use statistical analysis to define
this range, and thereby its confidence level, more quantitatively.

Fig. 1.1 The range of a ball-bearing
launched from a spring-loaded projectile
launcher. (a) shows the location at which
the projectile landed on carbon paper—the
repetition of the experiment with nominally
the same experimental conditions is seen to
yield different results. In (b) a histogram of
the total radial range of the projectile from
the launcher is constructed, with the number
of occurrences within a bin of width 10 cm
plotted.

Why do we need a statistical description of experiments performed on
systems which are usually described by a well-known set of equations,
and are hence deterministic? Figure 1.1 shows the results of an experiment
measuring the range of a ball-bearing launched from a spring-loaded pro-
jectile launcher. Successive measurements were taken of the distance the
ball-bearing projectile landed with respect to the launching cannon. A his-
togram of the projectile distance is plotted in Fig. 1.1(b). The crucial point
to note is the following: although nominally these repeat measurements
are performed under exactly the same conditions, and Newton’s laws of
motion, which govern the trajectory, are time independent, successive repeats
of the experiments gave different values for the range of the ball-bearing
projectile.

The histogram in Fig. 1.1(b) contains the information about the range of
the projectile, and the uncertainty in this range. In this book we will dis-
cuss statistical techniques to analyse the location of the centre and width of
histograms generated from multiple repeats of the same experiment. For this
example these techniques enable a quantitative determination of the range and
its uncertainty.

http://physics.nist.gov/cuu/Constants/
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1.2.1 Terminology

You should note that despite many attempts to standardise the notation, the
words ‘error’ and ‘uncertainty’ are often used interchangeably in this context—
this is not ideal—but you have to get used to it! (A discussion of the Interna-
tional Standardisation Organisation’s Guide to the Expression of Uncertainty
in Measurement (GUM) is presented in Chapter 9.)

Fig. 1.2 Terminology used in error analy-
sis. Simulations of 100 measurements are
shown in histograms of constant bin-width.
The extent of the scatter of the data (the width
of the histogram) is a measure of the preci-
sion, and the position of the centre of the his-
togram relative to the dashed line represents
the accuracy. The histograms show (a) pre-
cise and accurate, (b) imprecise and accurate,
(c) precise and inaccurate and (d) imprecise
and inaccurate sets of measurements.

There are two terms that have very different meanings when analysing
experimental data. We need to distinguish between an accurate and a precise
measurement. A precise measurement is one where the spread of results is
‘small’, either relative to the average result or in absolute magnitude. An
accurate measurement is one in which the results of the experiment are in
agreement with the ‘accepted’ value. Note that the concept of accuracy is only
valid in experiments where comparison with a known value (from previous
measurements, or a theoretical calculation) is the goal—measuring the speed
of light, for example.

Figure 1.2 shows simulations of 100 measurements of a variable. The dashed
vertical line in the histogram shows the accepted value. The scatter of the data
is encapsulated in the width of the histogram. Figures 1.2(a) and (c) show
examples of precise measurements as the histogram is relatively narrow. In
Fig. 1.2(a) the centre of the histogram is close to the dashed line, hence we call
this an accurate measurement. The histograms in Fig. 1.2 show the four possi-
ble combinations of precise and accurate measurements: Fig. 1.2(a) represents
an accurate and precise data set; Fig. 1.2(b) an accurate and imprecise data set;
Fig. 1.2(c) an inaccurate but precise data set; and finally Fig. 1.2(d) both an
inaccurate and imprecise data set.

Based on the discussion of precision and accuracy, we can produce the
following taxonomy of errors, each of which is discussed in detail below:

• random errors—these influence precision;
• systematic errors—these influence the accuracy of a result;
• mistakes—bad data points.

1.2.2 Random errors

Much of experimental physics is concerned with reducing random errors.
The signature of random errors in an experiment is that repeated measure-
ments are scattered over a range, seen in Fig. 1.1. The smaller the random
uncertainty, the smaller the scattered range of the data, and hence the more
precise the measurement becomes. The best estimate of the measured quantity
is the mean of the distributed data, and as we have indicated, the error is
associated with the distribution of values around this mean. The distribution
that describes the spread of the data is defined by a statistical term known
as the standard deviation. We will describe these terms in greater detail in
Chapters 2 and 3.

Having quantified the uncertainty in a measurement, the good experi-
mentalist will also ask about the origin of the scatter of data. There are two
categories of scatter in experiments: (1) technical, and (2) fundamental noise.
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A given apparatus will have a fundamental noise limit (governed by some law
of physics, e.g. diffraction) but will typically operate with a higher noise level
(technical noise) which could, in principle, be reduced. In Fig. 1.1 the source
of the scatter is technical in nature. The trajectories are subject to the determin-
istic Newton’s laws of motion. However, the parameters which categorise the
trajectories can vary. Maybe the launcher recoils and changes the next launch
angle, or perhaps reloading the cannon with the same projectile might load the
spring to a different tension each time. It is possible to design experiments with
sufficient care that the origin of the random errors approaches the fundamental
noise limit of the apparatus. The good experimentalist will take measures to
reduce the technical noise for a given apparatus; if the fundamental noise level
remains the limiting feature of the experiment a new apparatus or approach
is needed.

Examples of fundamental noise limits include Johnson and shot noise. John-
son noise5 arises in a resistor as a consequence of the thermal agitation of the

5Named after J. B. Johnson, who first stud-
ied the effect at Bell Laboratories; Thermal
agitation of electricity in conductors, Nature
(1927) 119, 50–51.

charge carriers and becomes important in experiments measuring low voltages.
The discrete nature of certain quantities gives rise to so-called shot noise—
when measuring feeble light beams the manifestation of the electromagnetic
field being composed of finite energy bundles, or photons, gives rise to random
fluctuation of the intensity.6

6Even for a constant-intensity light source,
the actual number, N , of photons detected in
a given time will have a Poisson distribution
about the (well-defined) mean. We will show
in Chapter 3 that the photon noise is equal
to the square root of the average number
of photons,

√
N . The signal-to-noise ratio is

then
N√
N

= √
N . When the number of pho-

tons collected is small the shot-noise limited
signal-to-noise ratio can be the limiting fea-
ture of an experiment.

There exist many statistical techniques for quantifying random errors, and
minimising their deleterious effect. These will be discussed at length in later
chapters. It should be emphasised that these techniques all rely on taking
repeated measurements.

1.2.3 Systematic errors

Systematic errors cause the measured quantity to be shifted away from the
accepted, or predicted, value. Measurements where this shift is small (relative
to the error) are described as accurate. For example, for the data from the
projectile launcher shown in Fig. 1.1 the total range needs to be measured from
the initial position of the ball-bearing within the launcher. Measuring from the
end of the cannon produces a systematic error. Systematic errors are reduced
by estimating their possible size by considering the apparatus being used and
observational procedures.

In Figs. 1.2(c) and (d) the measurements are scattered, but none of the indi-
vidual measurements is consistent with the accepted value: the measurements
are consistently smaller than the predicted value. This is the tell-tale sign of at
least one, and possibly more, systematic error(s). In contrast to random errors,
there do not exist standard statistical techniques for quantifying systematic
errors. It is left to the experimenter to devise other sets of measurements which
might provide some insight as to the origin of the systematic discrepancies.

1.2.4 Mistakes

Another class of error which defies mathematical analysis is a mistake. These
are similar in nature to systematic errors, and can be difficult to detect. Writing
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2.34 instead of 2.43 in a lab book is a mistake, and if not immediately corrected
is very difficult to compensate for later.

Fig. 1.3 A histogram of measurements when
10% of the events are logged incorrectly
by automated data-collecting software.
The presence of the erroneous points is
clearly visible when the data are displayed
graphically.

There are other well-known types of mistakes which can influence the
precision and accuracy of experimental results with potentially disastrous
consequences. Misreading scales occurs often with an analogue device which
has a 0–10 scale above the gradations, and a 0–3 scale underneath. Care has
to be taken when using a signal generator where an analogue dial from 1 to
10 is used in conjunction with multiplier knobs such as 1–10 kHz. With an
instrument such as an oscilloscope one has to be careful to check whether a
multiplier such as ×10 has been engaged. In Fig. 1.3 a histogram of events is
shown, where the automated data-collecting software misfired on 10% of the
events. Malfunction of the apparatus can be difficult to spot; the presence of
erroneous points can become apparent when the data are displayed graphically.
There are many examples where confusion over units has had disastrous
consequences. In 1999 the failure of the NASA Mars Climate Orbiter was
attributed to confusion about the value of forces: some computer codes used
SI units, whereas others used imperial. A Boeing 767 aircraft ran out of fuel
mid-flight in 1983; a subsequent investigation indicated a misunderstanding
between metric and imperial units of volume.

Obviously the good experimentalist makes very few, if any, such mistakes;
their effects will not be discussed further in this book.

1.3 Precision of measurements

There are certain measurements with no statistical scatter; repeating the exper- RULE OF THUMB: The precision of a
measurement only equals the precision of the
measuring device when all repeated measure-
ments are identical.

iment does not yield more useful information. If six successive measurements
of the amount of acid titrated are 25.0, 25.0, 25.0, 25.0, 25.0 and 25.0 cm3 it
is obviously a waste of time to perform another similar measurement. In this
case the precision of the measurement is limited by the finite resolution of the
scale on the titration apparatus. How do we estimate the precision of the device
in this case? We discuss the two types of measuring instrument (analogue and
digital) below.

It should be stressed that estimating the uncertainty based on some property
of the measuring device is only valid if successive measurements are identical.
The spread of the ranges in Fig. 1.1 is significantly greater than the precision
of the measuring device, hence the statistical techniques introduced in the next
chapter must be used to calculate the uncertainty in that case.

1.3.1 Precision of an analogue device

Imagine that you are measuring the length of a piece of A4 paper with a RULE OF THUMB: The highest precision
achievable with an analogue device such as a
ruler is half a division.

ruler with 1 mm gradations. Successive measurements all give 297 mm. It
seems reasonable to estimate the precision in this case to be half a division,
i.e. ± 0.5 mm, and thus we would report the length of the piece of paper as
297.0 ± 0.5 mm.

It is also worth considering cases where this rule of thumb is too pessimistic.
Imagine that the measurements of the length of the A4 paper were performed
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with a ruler which only had 1 cm gradations. All measurements of the length
would lie between 29 and 30 cm; in this instance estimating the uncertainty to
be half a division, or ±0.5 cm, is a gross overestimate. A good experimentalist
will be able to interpolate, i.e. estimate the position with a finer resolution
than the gradations. There is no simple rule as to what value to report for
the precision in this case; indeed, the error estimation can only be done by
the experimenter, and is likely to vary for different experimenters. Figure 1.4
illustrates the issues associated with the precision of an analogue device.
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Fig. 1.4 The upper part of the figure displays
a situation where estimating the uncertainty
to be half a division is appropriate; in contrast
in the lower part of the figure the uncertainty
in the measurement is substantially smaller
than half a division.

1.3.2 Precision of a digital device

Repeat measurements of the voltage of a battery with a digital multimeter each
yields 8.41 V. What is the uncertainty?

Some digital instruments come with manufacturer’s specifications for the
uncertainty, such as ‘half the last digit’—the equivalent result to the analogue
case. Therefore one could write 8.410 ± 0.005 V. Note the extra zero which
appears at the end of the reported number which is not present in the actual
reading. There is a significant assumption implicit in this estimate, namely that
the digital instrument does an appropriate rounding, i.e. it does not truncate the
number. If the former occurs then 8.419 would appear as 8.42, whereas if it is
the latter, 8.419 would appear as 8.41. Ascertaining whether the meter rounds
or truncates can be difficult, therefore the conservative estimate is to use the
full last digit, i.e. we would report 8.41 ± 0.01 V for the example above to be
on the safe side.RULE OF THUMB: The precision of a dig-

ital meter is limited to the last decimal point;
i.e. one in the last digit.

1.4 Accuracy of measurements

The accuracy of an experiment is determined by systematic errors. For an
inaccurate set of measurements there will be a difference between the mea-
sured and accepted values, as in Figs. 1.2(c) and (d). What is the origin
of this discrepancy? Answering this question, on the whole, is difficult and
requires insight into the experimental apparatus and underlying theories. For
the example of the projectile launcher, the range is a function of both the launch
angle and muzzle speed. Experimental factors which could affect the accuracy
include the setting of the launch angle or the reliance on the manufacturer’s
specification of the muzzle speed. The theoretical prediction, for this example,
is based on a calculation which ignores air resistance—the validity of this
assumption could be questioned.

Three of the more common sources of systematic error are zero, calibrationRULE OF THUMB: Ensure apparatus is
properly calibrated and zeroed. and insertion errors. An example of a zero error is using a ruler to measure

length if the end of the ruler has been worn away. A metal ruler calibrated
at 20 ◦C will systematically yield measurements which are too large if used
at 10 ◦C owing to the thermal contraction of the gradations; this is a calibra-
tion error. Examples of insertion errors include: placing a room-temperature
thermometer in a hot fluid, which will change the temperature of the fluid;
the current in an electrical circuit being changed by placing a meter across a
component.
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Chapter summary

• An experiment is not complete until an appropriate error analysis has
been conducted.

• When successive measurements of the same quantity are repeated there
is usually a distribution of values obtained.

• A crucial part of any experiment is to measure and quantify the uncer-
tainties in measurement.

• An accurate measurement agrees with the expected value.
• A precise measurement has a small relative uncertainty.
• The signature of the presence of random errors is that repeat measure-

ments of the same quantity produce different results.
• The statistical spread of a data set is a reflection of the precision of the

measurement.
• The deviation of the centre of the histogram from the accepted value is

a reflection of the accuracy of the measurement.
• Systematic errors influence the accuracy of a measurement.
• The precision of an analogue device is half a division.
• The precision of a digital device is one in the last digit.
• The precision of a measurement is only equal to the precision of the

measuring device if repeat measurements are identical.
• Ensure apparatus is properly calibrated and zeroed.
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In Section 1.2 we discussed how random errors are a feature of experiments
in the physical sciences. In the absence of systematic errors there is a spread
of measurements about the accepted value owing to random errors. We have
seen in Chapter 1 that when successive measurements of the same quantity are
repeated there is a distribution of values. A reading taken at a given time will
differ from one taken subsequently. In Section 1.2 we discussed some of the
possible causes for these fluctuations. In this chapter we take it as given that
there are random errors in repeated measurements, and discuss techniques of
how to analyse a set of measurements, concentrating in particular on how to
extract objective numbers for two vital properties of a distribution: (i) our best
estimate of the quantity being measured, and (ii) our estimate of the uncertainty
in the value to report. We employ statistical techniques for the analysis to
reflect the fact that the distribution of measurements is a consequence of
statistical fluctuations inherent in collecting a finite number of data points; we
implicitly assume that there are no systematic errors.

2.1 Analysing distributions: some
statistical ideas

In Fig. 2.1 we plot histograms of the occurrence of a particular value of a
measured quantity, x . Four histograms are shown where the number of data
points collected, N , increases from (a) 5, to (b) 50, to (c) 100, to (d) 1000. It is
apparent that as the number of data points increases, the distribution becomes
smoother, but that the width remains unchanged. A smoother histogram will
facilitate a more precise estimate of the three quantities which are of most
interest to us: the centre, the width and the uncertainty in the location of
the centre. We discuss methods for ascertaining the value of each of these
quantities in the following sections.

2.2 The mean

The best method for reducing the effects of random errors on a measurement
is to repeat the measurement, and take an average. Consider N measurements,
x1, x2, . . . , xN . The fluctuations responsible for the spread of readings are
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random, consequently they are equally likely to be higher as lower than the
accepted value. The arithmetic mean is a way of dividing any random errors
among all the readings. We therefore adopt the mean, x̄ , as our best estimate
of the quantity x .

x̄ = 1

N
(x1 + x2 + · · · + xN ) = 1

N

N∑
i=1

xi . (2.1)

However, as is evident from Fig. 2.1, quoting the mean does not yield all the
information that is inherent in a set of repeat measurements.

Fig. 2.1 Histograms of different experimen-
tal runs with (a) 5, (b) 50, (c) 100 and (d)
1000 data points. The histograms become
smoother as more data points are collected,
making it easier to deduce the centre, the
width and the uncertainty in the location of
the centre.

2.3 The width of the distribution: estimating
the precision

The precision of the N measurements can be estimated from the distribution of
the scattered data. The more similar the readings, the smaller the width of the
distribution, and the more precise the measurement. (This was the situation
depicted in Fig. 1.2a and b.) We can therefore quantify this precision by
looking in detail at the width of this distribution.

2.3.1 Rough-and-ready approach to estimating the width

Suppose we had timed the period of oscillation, T , of a pendulum 10 times and
obtained the values listed in Table 2.1.

Table 2.1 Ten measurements of the period of oscillation, T , of a pendulum. The
precision of the measuring device is 0.1 s.

Trial 1 2 3 4 5 6 7 8 9 10

Period/s 10.0 9.4 9.8 9.6 10.5 9.8 10.3 10.2 10.4 9.3

All data points lie within the interval 9.3 ≤ T ≤ 10.5 s which covers a
range of 1.2 s, or a spread around the mean (T̄ = 9.9 s) of about ±0.6 s.
Evaluating the maximum spread of the data is one rough-and-ready approach
to estimating the precision of the measurement. It is somewhat pessimistic,
because as we will see later, we generally take the precision in a measure-
ment to be two-thirds of the maximum spread of values, and therefore the
spread of the data in Table 2.1 is approximately ±0.4 s. The factor of two-
thirds is justified for a Gaussian distribution, discussed in Chapter 3. Note
that the spread of the measurements is significantly worse than the preci-
sion of the measuring instrument—this is why taking repeat measurements is
important.

We can therefore say that:

• a typical measurement of the period is likely to be within 0.4 seconds of
the mean value;

• the precision of the measurements is 0.4 seconds.
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In many cases this simple procedure (illustrated in Fig. 2.2a) provides a
fast method for estimating the precision, and is adequate in estimating the
spread of the data around the mean. It is particularly appropriate when the
number of data points is low, N ≤ 10. The method is summarised in the box
below:

Fig. 2.2 Histograms of 10 experimental me-
asurements of the variable x . In (a) the max-
imum deviation dmax is positive, and the
width of the distribution, σ , is also indicated.
For (b) the point furthest from the mean has a
negative deviation, and the width is taken as
two-thirds of the modulus of this deviation. In
(b) the estimate of the precision is dominated
by one deviant point.

Rough-and-ready approach to estimating the width

• Calculate the mean of the data set, x̄ .
• Calculate the maximum spread of the data around the mean: either

dmax = xmax − x̄ , or dmax = x̄ − xmin, whichever is greater.
• Quote the standard deviation as two-thirds of the maximum deviation:

σ = 2/3 × dmax.

2.3.2 Statistical approach to estimating the width

As more data points are recorded there is an increasing probability that the
distribution describing the spread will have extended wings. Calculating the
spread of data from the maximum deviation can give a misleading estimation
(illustrated in Fig. 2.2b). To avoid this problem we need a measure of the
random uncertainty that depends on all the measurements, and not just the
extreme values as in the method above. The statistical quantity that is widely
used is the standard deviation.

We define the deviation from the mean of the i th data point as:

di = xi − x̄ . (2.2)

The deviation di is equally likely to be positive as negative, and therefore when
summed over a data set will be zero. Returning to the distributions of the period
of oscillation from Table 2.1, Table 2.2 shows the 10 measurements and their
deviation from the mean.

The average deviation, d̄ = (1/N )
∑

i di , is zero and therefore cannot be
used as a measure of the spread of the data. Note that in Table 2.2 the average
of the squared deviation is not zero. This motivates the introduction of the
sample variance, which is the square of the standard deviation, σ , as the sum
of the squares of these deviations over the data set. The standard deviation is

Table 2.2 Ten measurements of the period of oscillation, T , of a pendulum. The
sum of the deviations �i di = 0, and the sum of the squares of the deviations
�i d2

i = 1.58 s2.

Period, T (s) 10.0 9.4 9.8 9.6 10.5
Deviation, d(s) 0.07 −0.53 −0.13 −0.33 0.57
Squared deviation, d2(s2) 0.0049 0.2809 0.0169 0.1089 0.3249

Period, T (s) 9.8 10.3 10.2 10.4 9.3
Deviation, d(s) −0.13 0.37 0.27 0.47 −0.63
Squared deviation, d2(s2) 0.0169 0.1369 0.0729 0.2209 0.3969
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thus defined:

σN−1 =
√(

d2
1 + d2

2 + · · · + d2
N

)
N − 1

=
√√√√ 1

N − 1

N∑
i=1

d2
i . (2.3)

The distribution is normalised to (N − 1) as opposed to N (as was the case for
the mean) because the data have already been used once to find the mean and
there are thus only (N − 1) independent values of the deviations with which
to define the variance (see Chapter 8).

The standard deviation is thus a statistical measure, based on all of the
available data, of the width of the distribution and hence will be a more
reliable estimation of the precision. When we take a series of measurements,
we obtain a mean value, x̄ , as our best estimate from that set of measurements,
with a standard deviation σ . If we were to make one more measurement, we
believe there is a two-thirds chance that the new measurement will lie in the
interval x̄ − σ ≤ x ≤ x̄ + σ . As we increase our sample size and refine our
estimates for the mean and standard deviation this becomes a more robust
belief.

For the data set given in Table 2.1 for the period of the pendulum we

calculate the variance σ 2
N−1 =

∑
d2

N − 1
, which numerically, from Table 2.2,

is σ 2
N−1 = 1.58

9
= 0.176 s2. Thus using eqn (2.3) the standard deviation is

σN−1 = 0.42 s, similar to the value obtained using the rough-and-ready
approach.

Fig. 2.3 Histograms of 10 000 samples with
mean 10 and standard deviation 1. The bin-
width is (a) 1.6, (b) 0.8, (c) 0.4 and (d)
0.2. The histograms become smoother as
the bin-width decreases, tending toward a
smooth distribution. Each histogram also has
a normal-distribution curve superimposed.
The agreement between the discrete and con-
tinuous functions improves as the bin-width
is reduced.

2.4 Continuous distributions

A measurement of a physical quantity will necessarily be discrete, with the
smallest division being limited by the gradations of the instrument (see Chap-
ter 1). It is instructive to consider how the forms of the histograms of Fig. 2.1
would evolve as a function of (i) the sample size (number of data points
collected), and (ii) the width of the bin used to construct the histogram. The his-
togram becomes smoother as more data are collected, as seen in the evolution
from (a) to (d) in Fig. 2.1. Two (conflicting) factors influence the choice of bin-
width; (i) there should be sufficient occurrences per bin (guaranteed by a wide
bin-width), and (ii) there should be enough bins contributing to the histogram
(guaranteed by a narrow bin-width). Figure 2.3 shows a histogram for 10 000
samples drawn from a normal distribution with mean 10 and standard deviation
1, constructed using different bin-widths. The distribution obviously becomes
smoother as the bin-width is reduced. This trend will continue until the number
of occurrences per bin is not statistically significant. It is useful to think of the
limit where the bin-width tends to zero; the envelope of the histogram becomes
a function which can be evaluated at any value of x . A continuous envelope is
plotted for each discrete histogram in Fig. 2.3. It becomes convenient to think
of a curve, or continuous distribution function, associated with the hypothetical
limit of the number of data points collected, N , tending to infinity.
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2.5 The normal distribution

The form of the continuous curve which is the envelope of the histogram
of Fig. 2.3 has a characteristic and familiar shape. For measurements with
random errors the distribution is called the normal, or Gaussian, distribution.1

1This distribution is also referred to as the
‘bell curve’.

Mathematically, it is a two-parameter function:2
2The prefactor 1

σ
√

2π
in the expression for

f (x) ensures that the function is normalised:

i.e.
∫ ∞
−∞

f (x) dx = 1.
f (x) = 1

σ
√

2π
exp

[
− (x − x̄)2

2σ 2

]
, (2.4)

which describes the distribution of the data about the mean, x̄ , with stan-
dard deviation, σ . Figure 2.4 shows the functional form of three normalised
Gaussian distributions, each with a mean of 10 and with standard deviations
of 1, 2 and 3, respectively. Each curve has its peak centred on the mean, is
symmetric about this value and has an area under the curves equal to 1. The
larger the standard deviation, the broader the distribution, and correspondingly
lower the peak value.3

3There are many possible definitions of the
‘width’ of a Gaussian distribution, including
Full Width at Half Maximum (FWHM), the
(1/e) width, the (1/e2) width. There are differ-
ent conventions in different disciplines as to
which to adopt; each version is proportional
to the standard deviation, σ , and we will use
that throughout this book.

Fig. 2.4 Normalised Gaussian distributions
with a mean of 10 and standard deviations of
1, 2 and 3.

Why is it called the normal distribution? Mathematical analysis shows that
the Gaussian distribution arises as the envelope of the histogram obtained
when a quantity being measured is subject to small, independent ‘kicks’
(or perturbations) of varying sign which contribute additively. Typically the
underlying mechanisms of the perturbations are unknown. As the conditions
which predict a Gaussian distribution occur often in nature, many distribution
functions of natural phenomena are found to be well described by the normal
distribution. We will see in Chapter 3 that the distribution of the means from a
set of measurements evolves to a Gaussian shape under certain conditions.

2.6 Sample and parent distribution

When discussing distributions of experimental measurements it is important
to distinguish between the sample and parent distributions. In the theory of
statistics, the parent distribution refers to the number of possible measured
values, ξi ; the parent population might consist of an infinite number of values.
Two independent parameters, the mean, μ, and a standard deviation, σparent,
characterise the parent distribution, and are related thus:

σparent =
√∑

(ξi − μ)2

Nparent
. (2.5)

As the mean and standard deviation are independently determined σparent is
defined with N in the denominator. In practice when we take a series of
measurements in an experiment, xi , we take a selection, or sample, from this
parent distribution which results in a distribution called the sample distribution.
This distribution is centred on the mean of the data set, x̄ , and has a standard
deviation:

σsample =
√∑

(xi − x̄)2

N − 1
. (2.6)
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The (N − 1) is required in the denominator in the sample distribution because
the mean, x̄ , is also determined from the same data set and is thus no longer
independently determined and the number of degrees of freedom is one fewer.∗∗The concept of the degrees of freedom is

discussed in more detail in Section 8.2. The goal is to make use of this sample distribution to estimate the mean
and standard deviation of the parent distribution. When we conduct an
experiment we discretely sample the parent distribution. In the limit that
N → ∞ the parent and sample distributions are the same and x̄ = μ and
σsample = σparent.

Table 2.3 The evolution of the mean
and standard deviation of a sam-
ple distribution with sample size,
N . The parent distribution was ran-
domly generated from a Gaussian
distribution with mean μ = 10, and
standard deviation σparent = 1.

N x̄ σsample

5 9.8 0.9
10 9.5 0.7
50 10.1 0.9

100 10.0 0.9
1000 10.07 0.99

If we take a single measurement we sample the parent distribution once. The
most probable value of x that we would measure is the mean (see Chapter 3)
and we therefore implicitly assume that x1 = μ. When we take multiple read-
ings, however, we build up a set of values and populate the sample distribution.
As we repeatedly sample the parent distribution we slowly build up a distrib-

ution of values centred on the mean of the sample distribution, x̄ = 1

N

∑
xi ,

which becomes an increasingly better approximation of μ as N increases.
As all the measurements sample the same parent distribution they are all
determined with the same precision as the parent distribution, σsample ≈ σparent.
As more data are recorded the standard deviation of the data does not change,
it simply becomes better defined. The evolution of the mean and standard
deviation of the data shown in Fig. 2.1 is encapsulated in Table 2.3. It is clear
from a visual inspection of both Fig. 2.1 and Table 2.3 that as N gets larger the
mean becomes better defined, but the standard deviation hardly changes.

A key concept which we have not discussed so far is the uncertainty in the
estimation of the mean. We see that as the number of data points increases the
histograms become smoother, but the standard deviation does not reduce: thus
the standard deviation of the sample is not a good measure of the error in the
estimation of the mean of the parent population. We can clearly determine the
position of the mean to a better precision than the standard deviation of the
sample population. The important concept here is that of signal-to-noise: the
precision with which we can determine the mean depends on the number of
samples of the parent distribution.

2.7 The standard error

So far we have introduced two important properties of a sequence of repeat
measurements where there is scatter owing to random errors, namely the
mean and standard deviation. We now introduce another crucial parameter,
the uncertainty in the location of the mean.

Figure 2.5 shows histograms of a simulation where 2500 points are chosen
from a normal parent distribution with mean μ = 10 and standard deviation
σparent = 1. In part (a) the histogram of the measurements is normal, centred
as expected on 10, and has a standard deviation of σsample = 1. The upper part
of the panel shows that most measurements are within two standard deviations
of the mean of the parent distribution, with very few points with a deviation
larger in magnitude than two standard deviations. For part (b) the same data
set was partitioned differently. The mean of every five points was calculated,



Fig. 2.5 Histograms of 2500 data points chosen from a normal parent distribution with mean μ = 10 and standard deviation σparent = 1. In (a)
the raw data are plotted, in (b) a mean of every five data points was calculated, and these 500 means and their distribution are plotted. In (c) 10
points were used to calculate 250 means, and in (d) 50 points were averaged to generate 50 means. Averaging over more points greatly reduces
the statistical fluctuations, and reduces the width of the histograms. Each histogram has the same bin-width. The mean, x̄ , and standard deviation,
σsample, are (a)10.0, 1.0, (b) 10.0, 0.5, (c) 10.0, 0.3 and (d) 10.00, 0.14.
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yielding 500 mean values; the histogram shows the distribution of these means.
It is evident from the width of the histogram that the distribution of these 500
means is significantly narrower than the distribution of the unaveraged data.
Averaging five data points greatly reduces the statistical fluctuations in the
distribution of the means. This trend continues in part (c) where the data set
was partitioned into 250 measurements of means of 10 points, and in part (d)
where 50 measurements of means obtained from 50 data points are plotted.

The width of the histogram of means is a measure of the precision of the
mean. It is clearly evident from Fig. 2.5 that the width of the histogram of
the means decreases as the size of the sample used to calculate the mean
increases—this is a consequence of averaging over statistical fluctuations. The
width of the histogram of means is the standard deviation of the mean, also
known as the standard error, α. When the number of measurements involved
in calculating the mean increases, the means are better defined; consequently
the histograms of the distributions of the means are narrower. Note that the
precision with which the mean can be determined is related to the number of
measurements used to calculate the mean. In practice one does not generate
histograms of the means based on trials containing many measurements;
rather one uses all N measurements xi to calculate one value for the mean
x̄ . We expect the standard error (the standard deviation of the mean), α, to
decrease as the number of data points we collect, N , increases. In Chapter 4
we discuss ways of combining measurements of the same quantity, and we
show4 that the standard error is reduced by a factor of

√
N with respect to the4This is a special case of the weighted

mean—see Chapter 4. sample standard deviation:

α = σN−1√
N

. (2.7)

A data set containing N multiple readings yields one value of the mean.
Thus we should quote our findings as the mean ± the error on the mean, i.e.

x̄ ± α = x̄ ± σN−1√
N

. In other words, we are saying that there is a two-thirds

chance that the measured parameter is within the range x̄ − α ≤ x ≤ x̄ + α.
One can interpret the standard error as being a standard deviation, not of the
measurements, but rather the mean: this is why the standard error is also called
the standard deviation of the mean (SDOM).55The reduction of the standard error by a

factor of
√

N with respect to the standard
deviation of the measurements will reappear
in the discussion of the central limit theorem
in Chapter 3.

The reduction of the standard deviation of the mean with respect to the
standard deviation of the parent population is inherent in Fig. 2.5. The
standard deviation of the mean based on using five measurements to calculate
the mean is α = 0.47, when based on 10 the standard deviation of means is
α = 0.30, and, finally, when based on 50 the standard deviation of means
is α = 0.14. From eqn (2.7) we would expect the error in the mean to be

σx̄ = σparent√
N

= 0.45, 0.32, 0.14, in excellent agreement with our findings.66We keep two significant figures to illustrate
the argument here, although with so few data
points we would generally only quote the
standard deviation to one significant figure.

2.7.1 The error in the error

There is one last statistical quantity which we must consider before we unveil
the procedure for how to report the best value, and its uncertainty, for a
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sequence of repeat measurements. Given that the precision with which we
know the mean varies with the number of measurements, we need to ensure
that we present the results in a systematic manner which reflects our confidence
in the error: i.e. we need to quantify the error in the error.

Fig. 2.6 The fractional error in the error is
plotted as a function of the number of mea-
surements, N . Note the logarithmic scale for
the abscissa. For five measurements the frac-
tional uncertainty in the error is 35%; 50
measurements are needed for the error to be
known to 10%, and 5000 measurements to
achieve a 1% fractional uncertainty.

There exists a formula for the fractional error in the error (Squires 2001,
Appendix B); it is defined as

error in the error = 1√
2N − 2

, (2.8)

and plotted in Fig. 2.6. It should be noted that the error on the error is a
slowly decreasing function with respect to N . For example, with only five
measurements the error estimate is only good to 1 part in 3 (35%). As the
sample size increases, the error in the error decreases, and we can be more
confident in our results, allowing for more significant figures to be quoted. Note
that the error in the error does not fall to a few percent (allowing two significant
figures to be quoted meaningfully) until approximately 10 000 data points
have been collected (see Exercise 2.4). Conversely, care should be taken when
choosing the number of appropriate significant figures if the first significant
figure of the error is 1—rounding an error of 1.4 to 1, or 1.51 to 2 causes
a change in the error of approximately 25%. The following rule is generally
adopted:7

7Corollary (i) If you have collected approxi-
mately 10 000 data points, or more, consider
quoting the error to two significant figures;
(ii) if the first significant figure of the error
is 1, consider quoting the second significant
figure.

Quote the error to one significant figure.

Note that it is extremely rare to quote errors to three significant figures or
higher.8 As we saw in Section 1.1, even the currently accepted values for the

8Worked example Analysis of repeat mea-
surements of the acceleration due to grav-
ity, g, yields ḡ = 9.812 3456 m s−2, with
α = 0.032 1987 m s−2.

• If this answer was based on 10
measurements, you would report
g = (9.81 ± 0.03) m s−2;

• if this answer was based on 7 500 mea-
surements, you would consider report-
ing g = (9.812 ± 0.032) m s−2.

If another measurement technique has
results which are ḡ = 9.817 654 m s−2 and
α = 0.101 23 m s−2, then

• If this answer was based on 10
measurements, you would report
g = (9.8 ± 0.1) m s−2;

• if this answer was based on 500 mea-
surements, you would consider report-
ing g = (9.82 ± 0.10) m s−2.

fundamental constants have their errors quoted only to two significant figures.
Note also that there is no rule about how many significant figures are included
in the mean—this is ascertained after the error (and its error) are evaluated.
The value of the acceleration due to gravity deduced in the worked example
after 7 500 measurements has an error known to two significant figures, and
a mean known to four significant figures, whereas Avogadro’s number has an
error known to two significant figures, and a mean known to nine significant
figures (see Section 1.1).

2.8 Reporting results

From the preceding section, we can formulate the following procedures to be
considered when we quote our results:

(1) Analyse the experimental data and calculate the mean; keep all signifi-
cant figures at this stage.

(2) Calculate the standard error (the error in the mean); keep all significant
figures at this stage.

(3) Think about how many significant figures should be retained for the
error having reflected on the number of data points collected.

(4) Round the mean to the appropriate decimal place.
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Returning to the data of Table 2.1, the mean is T̄ = 9.9 s, standard deviation

σN−1 = 0.42 s, and standard error α = σN−1√
N

= 0.13 s. As the analysis is

based on so few data points only the first significant figure of the error is
retained; the result is reported as T = (9.9 ± 0.1) s.

2.8.1 Rounding and significant figures

The theme of this chapter has been that all measurements are subject toRULE OF THUMB: If an error is not quoted
assume that the uncertainty is in the last
reported digit.

uncertainty. A working rule is that, in the absence of an error being quoted,
we assume that a number has significance equal to a single unit in the last
figure quoted. Thus if we were to say that the resistance of a resistor was 97 	,
it is said to have an absolute uncertainty of 1 	; a resistor with a value of
100.04 	 indicates an absolute uncertainty of 0.01 	. The former value is said
to be known to two significant figures, the latter to five. Confusion can occur
in ascertaining how many significant figures a number has when zeroes are
involved.

Rules for identifying significant digits
• All non-zero digits are significant:

2.998 × 108 m s−1 has four significant figures.
• All zeroes between non-zero digits are significant:

6.022 141 79×1023 mol−1 has nine significant figures.
• Zeroes to the left of the first non-zero digits are not significant: 0.51 MeV

has two significant figures.
• Zeroes at the end of a number to the right of the decimal point are

significant: 1.60×10−19 C has three significant figures.
• If a number ends in zeroes without a decimal point, the zeroes might be

significant: 270 	 might have two or three significant figures.

The ambiguity in the last rule can be resolved by the use of so-called sci-
entific notation. For example, depending on whether two or three significant
figures is appropriate, we could write 270 	 as 0.27 k	, or 2.7×102 	, both of
which have two significant figures; or 0.270 k	, or 2.70×102 	, both of which
have three significant figures. Note that the entries 0.3 k	 and 300 	 in a lab
book carry very different significance.RULE OF THUMB: To avoid confusion

when numbers end in zeros, report your val-
ues using scientific notation.

Significant figures must also be considered when carrying out calculations.
It is important to carry all digits through to the final result before rounding to
avoid rounding errors which compromise the accuracy of the final result. The
principle is the following:

The precision of a calculated result is limited by the least precise measure-
ment in the calculation.

Rules for rounding to the appropriate number of significant figures
Decide which is the last digit to keep, then:
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• Leave the last digit unchanged if the next digit is 4 or lower: 6.62×10−34

becomes 6.6×10−34 if only two significant figures are appropriate.
• Increase the last digit by 1 if the next digit is 6 or higher: 5.67×10−8

becomes 5.7×10−8 if only two significant figures are appropriate.

If the digit after the last one to be retained is 5 the recommended procedure
is to choose the even round value.9 9This round-to-even method avoids bias in

rounding, because half of the time we round
up, and half of the time we round down.

• Leave the last digit unchanged if it is even. For example: 3.45 becomes
3.4 if only two significant figures are appropriate.

• Increase the last digit by 1 if it is odd. For example: 3.55 becomes 3.6 if
only two significant figures are appropriate.

In addition and subtraction, the result is rounded off to the same number
of decimal places as the number with the least number of decimal places. For
example, 1.23 + 45.6 should be quoted as 46.8. This reflects the fact that we
do not know whether the 45.6 is 45.56 or 45.64 to the next decimal place.

In multiplication and division, the answer should be given to the same num-
ber of significant figures as the component with the least number of significant
figures. For example, 1.2 × 345.6 is evaluated as 414.72 but quoted as 4.1 ×
102 on account of the least precise value having only two significant figures.

It is important to carry all significant figures through long calculations
to avoid unnecessary rounding errors. Rounding to the appropriate precision
should only be done at the end of the calculation.

There are some exact numbers which can be considered to have an infinite
number of significant figures, and they do not influence the precision to which
a result is quoted. They are often found in conversion factors (such as π or

√
2)

and when counting: there are exactly 100 centimetres in 1 metre; there are 14
students in the laboratory.

2.9 The five golden rules

We finish this chapter with the five golden rules which must be obeyed when
reporting a parameter which was determined experimentally.

(1) The best estimate of a parameter is the mean.
(2) The error is the standard error in the mean.
(3) Round up the error to the appropriate number of significant figures.
(4) Match the number of decimal places in the mean to the standard error.
(5) Include units.

Chapter summary

• The presence of random uncertainties can be ascertained by taking
repeat measurements.

• For N measurements x1, x2, . . . , xN the mean, x̄ , is the best estimate of
the quantity x .
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• The standard deviation of the sample σN−1 gives a measure of the
precision of the measurements—two-thirds of the measurements will
lie within σN−1 of the mean.

• The uncertainty in the location of the centre of the distribution is given
by α, the standard error of the mean. The error decreases (slowly) with
more measurements:

α = σN−1√
N

.

• The result of repeated measurements is reported as x̄ ± α.
• The fractional error in the error decreases very slowly with increasing

the number of measurements, hence the error is usually quoted to only
one significant figure.

Exercises

(2.1) Mean, standard deviation and standard error (1)
An experiment was conducted to determine the concen-
tration of a sodium hydroxide solution. The eight repeat
measurements of the volume of hydrochloric acid titrated
(all in ml) are: 25.8, 26.2, 26.0, 26.5, 25.8, 26.1, 25.8 and
26.3. Calculate (i) the mean, (ii) the standard deviation
using the rough-and-ready approach; (iii) the standard
deviation using eqn (2.3); (iv) the standard error of the
volume.

(2.2) Mean, standard deviation and standard error (2)
12 measurements of the sensitivity of a photodiode cir-
cuit (in amps/watt) are: 5.33, 4.95, 4.93, 5.08, 4.95, 4.96,
5.02, 4.99, 5.24, 5.25, 5.23 and 5.01. Calculate (i) the
mean, (ii) the standard deviation using eqn (2.3); (iii) the
standard error.

(2.3) Reduction of the standard error
In a magnetometry experiment, after a minute of collect-
ing data the statistical noise was reduced to 1 picotesla.
For how much longer should data be collected in order
to reduce the random error by a factor of 10?

(2.4) Error in the error
Consider a set of measurements with the standard error
calculated to be α = 0.987 654 321. Here we address
the question of how many significant figures should be
quoted. Construct a spreadsheet with four columns. The
first column should be N , the number of measurements
on which α is based. In the second column write α

to the nine significant figures quoted above. The third

and fourth columns should be α ×
(

1 − 1√
2N − 2

)
and α ×

(
1 + 1√

2N − 2

)
, respectively. As we are inter-

ested in the variation over a large dynamic range, choose
values for N such as 2, 3, 5, 10, 20, 30, etc. Verify the
statement from Section 2.7.1 that the number of data
points, N , needs to approach a few tens of thousands
before the second significant figure in the error can be
quoted, i.e. when the values in the three columns become
equal to the second significant figure. Repeat the analy-
sis for the case where α = 0.123 456 789, i.e. the first
significant digit of the error is 1. How many data points
must be collected before the third significant figure can
be quoted?

(2.5) Reporting results (1)
Fifteen measurements of a resistance are quoted here,
based on approximately 10 repeat measurements. Only
three of them obey the five golden rules. Identify the
mistakes in the other results.

(i) (99.8 ± 0.270) × 103 	,

(ii) (100 ± 0.3) × 103 	,

(iii) (100.0 ± 0.3) × 103 	,

(iv) (100.1 ± 0.3) × 103,

(v) 97.1 × 103±276 	,

(vi) (99.8645 ± 0.2701) × 103 	,

(vii) 98.6 × 103 ± 3 × 102 	,
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(viii) 99.4 × 103 ± 36.0 × 102 	,

(ix) 101.5 × 103 ± 0.3 × 101 	,

(x) (99.8 ± 0.3) × 103 	,

(xi) 95.2 × 103 ± 273 	,

(xii) 98, 714 ± 378 	,

(xiii) 99000 ± 278 	,

(xiv) 98, 714 ± 3 × 103 	,

(xv) 98900 ± 300 	.

(2.6) Reporting results (2)
Analysis of a Rydberg spectrum yields a quantum defect,
δ, for each line. How would you report the results if you
obtain (i) δ̄ = 3.273 46, with αδ = 0.019 13 from five
measurements; (ii) δ̄ = 3.265 13, with αδ = 0.002 506
from 50 measurements; or (iii) δ̄ = 3.266 81, with
αδ = 0.000 270 from 100 measurements?

(2.7) Significant figures
Round up the following numbers to (a) two significant
figures, and (b) four significant figures:

(i) 602.20,

(ii) 0.001 3806,

(iii) 0.022 413 83,

(iv) 1.602 19,

(v) 91.095,

(vi) 0.1660,

(vii) 299 790 000,

(viii) 66.2617,

(ix) 0.000 006 672 and

(x) 3.141 593.

(2.8) Scientific notation
Rewrite the ten numbers from Exercise (2.7) in scientific
notation.

(2.9) Superfluous precision
A car covers a distance of 250 m in 13 s; the average
speed is calculated to the 10 decimal places of the calcu-
lator as 19.230 769 23 m s−1. Explain why it is incorrect
to believe all of the significant figures of the quoted
speed.
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In this chapter we develop further some of the ideas from Chapter 2, and
consider the link between uncertainties in measurements and probabilities. The
discrete histograms considered so far will be augmented by the concept of a
probability distribution function. The most important distribution function for
error analysis is a Gaussian, and we extend the discussion from Chapter 2
about the pertinent properties of this function. We are then able to discuss
the confidence limits in error analysis, our confidence that the accepted value
of a measured quantity will lie within a certain range. We also consider
the converse, namely what is the range of a variable within which a certain
percentage of measurements is likely to lie.

When counting discrete random events, such as the number of particles
emitted from a radioactive source, it transpires that the distribution does not
follow a Gaussian distribution as discussed so far, but rather is better described
by a Poisson distribution. We discuss the relevant features of this distribution
for error analysis.

3.1 Distributions and probability

In Section 2.4 we introduced for a discrete histogram the concept of the
envelope curve, or continuous distribution function, associated with the hypo-
thetical limit of the number of data points collected, N , tending to infinity. In
statistics a continuous random variable, say x , has a probability distribution
which may be specified in terms of a probability distribution function (or
probability density function), PDF (x). A probability distribution function has
the following properties:

(1) The distribution is said to be normalised, or proper, if

∞∫
−∞

PDF (x) dx = 1. (3.1)

(2) The probability that x lies between two values x1 and x2, with x1 ≤ x2,
is

P (x1 ≤ x ≤ x2) =
x2∫

x1

PDF (x) dx . (3.2)
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(3) The expectation of the nth power of the random variable x is

xn =
∞∫

−∞
PDF (x) xn dx . (3.3)

The mean can be calculated by applying eqn (3.3) with n = 1:

x̄ =
∞∫

−∞
PDF (x) x dx . (3.4)

The variance, σ 2, is defined as:

σ 2 =
∞∫

−∞
PDF (x) (x − x̄)2 dx =

∞∫
−∞

PDF (x)
(

x2 + x̄2 − 2x x̄
)

dx . (3.5)

By applying eqn (3.3) with n = 2 and eqn (3.4) we obtain

σ 2 = x2 − x̄2, (3.6)

where x2 is the mean of the squares of the random variable x .

3.2 The Gaussian probability
distribution function

As we discussed in Section 2.5 the most important function in error analysis
is the Gaussian (or normal) probability density distribution. For the sake of
brevity we usually refer to it as the Gaussian probability distribution, or
simply the Gaussian distribution. In this chapter we will write the function
as G (x; x̄, σ ), where:

G (x; x̄, σ ) = 1

σ
√

2π
exp

[
− (x − x̄)2

2σ 2

]
, (3.7)

to emphasise that the function has x as a variable, and has the mean, x̄ , and
standard deviation, σ , as two parameters.

3.2.1 Probability calculations
Fig. 3.1 The error function of the ran-
dom variable x is the cumulative integral
(the area under the curve) of a Gaussian
from −∞ to x . Here it is plotted for a
Gaussian with mean x̄ = 10 and standard
deviation σ = 3. The function is antisym-
metric about the mean; is equal to 0.159 for
x = x̄ − σ , 0.500 for x = x̄ , and 0.841 for
x = x̄ + σ ; and the error function tends
asymptotically to 1.

We can use eqn (3.7) to determine the fraction of the data which is expected
to lie within certain limits. For a Gaussian the cumulative probability is the
well-known error function Erf (x1; x̄, σ ):

Erf (x1; x̄, σ ) =
∫ x1

−∞
G (x; x̄, σ ) dx . (3.8)

This function has the mean, x̄ , and the standard deviation, σ , as parameters, and
is evaluated at x = x1. The error function is plotted in Fig. 3.1 and tabulated in
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many data-analysis packages. The fractional area under the curve between the
bounds x1 and x2 is thus:

P (x1 ≤ x ≤ x2) = 1

σ
√

2π

∫ x2

x1

exp

[
− (x − x̄)2

2σ 2

]
dx

= Erf (x2; x̄, σ ) − Erf (x1; x̄, σ ) . (3.9)

Figure 3.2 shows the relationship between the error function and the area

Fig. 3.2 A Gaussian with mean x̄ = 10 and
standard deviation σ = 3 is shown. In (a)
the fraction of the curve within the interval
5 ≤ x ≤ 11.5 is shaded; this is equal to the
difference between (b) the error function
evaluated at 11.5 and (c) the error function
evaluated at 5. The relevant values of the
error function are highlighted in (d).

under certain portions of the Gaussian distribution function. For a Gaussian
with mean x̄ = 10 and standard deviation σ = 3, what fraction of the data lies
in the interval 5 ≤ x ≤ 11.5? For this Gaussian the probability of obtaining a
value of x ≤ 11.5 is 0.69, and the probability of obtaining a value of x ≤ 5 is
0.05; hence 64% of the area under the curve is in the interval 5 ≤ x ≤ 11.5.

3.2.2 Worked example—the error function

A box contains 100 	 resistors which are known to have a standard deviation
of 2 	. What is the probability of selecting a resistor with a value of 95 	 or
less? What is the probability of finding a resistor in the range 99–101 	?

Let x represent the value of the resistance which has a mean of x̄ = 100 	.
The standard deviation is given as σ = 2 	. The probability of selecting a
resistor with a value of 95 	 or less can be evaluated from eqn (3.8):

P = Erf (95; 100, 2) = 0.0062.

Applying eqn (3.9) we find the probability of finding a resistor in the range
99–101 	

P = Erf (101; 100, 2) − Erf (99; 100, 2) = 0.38.

These integrals can be evaluated numerically, found in look-up tables or found
by using appropriate commands in spreadsheet software.

3.3 Confidence limits and error bars

Consider first the fraction of the data expected to lie within one standard
deviation of the mean:

P = 1

σ
√

2π

∫ x̄+σ

x̄−σ

exp

[
− (x − x̄)2

2σ 2

]
dx

= Erf (x̄ + σ ; x̄, σ ) − Erf (x̄ − σ ; x̄, σ ) . (3.10)

Numerically, this integral is equal to 0.683 (to three significant figures). In
other words, approximately two-thirds of the total area under the curve is
within a standard deviation of the mean. This is the origin of the two-thirds
terms used extensively in Chapter 2. We can now quantify our statements about
the standard deviation of a sample of measurements: we are confident, at the
68% level, that, were we to take another measurement, the value would lie
within one standard deviation of the mean.
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3.3.1 Extended ranges

Fig. 3.3 The shaded areas of the Gaussian
curves show the fraction of data within (a)
one standard deviation of the mean, (b) two
standard deviations, and (c) three standard
deviations. The corresponding points on the
error function, along with those for four stan-
dard deviations, are indicated in (d).

By evaluating the error function of eqn (3.9) we can define the probabilities
that the data lie within an interval defined by two, three, etc. standard devia-
tions from the mean; these values are indicated in Fig. 3.3, and tabulated in
Table 3.1.

Table 3.1 The fraction of the data which lies within different ranges of a Gaussian
probability distribution function.

Centred on mean ±σ ±1.65σ ±2σ ±2.58σ ±3σ

Measurements within range 68% 90% 95% 99.0% 99.7%
Measurements outside range 32% 10% 5% 1.0% 0.3%

1 in 3 1 in 10 1 in 20 1 in 100 1 in 400

Recalling the interpretation of the standard error as a standard deviation of the
mean we can also calculate other confidence intervals. Whereas often in the
physical sciences the error bar is taken as one standard deviation of the mean
(the standard error), other conventions exist; in other disciplines the 95% con-
fidence limit is often used. Evaluating the error function of eqn (3.9) it can be
shown that 95.0% of the measurements lie within the range ±1.96σ . Therefore
if a data set of N measurements has a mean x̄ and standard deviation σN−1, we

would report the result at the 95% confidence limit as x̄ ± 1.96 × σN−1√
N

. Dif-

ferent confidence limits can be used by scaling the standard error appropriately.
It should be noted that in the above discussion it is assumed that the standard

deviation of the Gaussian distribution is precisely and accurately known. When
σN−1 is ascertained from experimental data, especially from a small number
of repeat measurements, greater care is needed with confidence limits. In
Chapter 8 we will discuss the Student’s t distribution which is more appropriate
for interval estimation from a small number of data points.

3.3.2 Rejecting outliers

Here we discuss a controversial topic in data analysis, that of rejecting outliers.
From Table 3.1 we learn that we should not be very surprised if a measure-
ment is in disagreement with the accepted value by more then one error bar,
α; indeed, for a group of 15 students in a laboratory performing the same
experiment, we would expect approximately five to report results where the
magnitude of the difference between the accepted and measured results is
greater than one error bar. However, as the fractional area under a Gaussian
curve beyond 3σ or 5σ is only 0.3% and 6 × 10−5%, respectively, we expect
such large deviations to occur very infrequently.
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Chauvenet’s criterion1 (Taylor 1997, Section 6.2; Bevington and Robinson 1Consider 10 data points, where a suspected
outlier is three standard deviations removed
from the mean. Should this data point be
retained? From Table 3.1 we see that Pout =
0.003, thus the expected number of out-
liers is 0.03. As this is much less than 0.5
Chauvenet’s criterion would indicate that the
suspect data point be rejected. The mean,
standard deviation and standard error of the
remaining nine data points should then be
recalculated.

2003 p. 56) is a test based on the Gaussian distribution with the aim of
assessing whether one data point which lies many error bars from the mean
(an outlier) should be regarded as spurious and hence discarded. The criterion
is equivalent to the statement ‘a data point is rejected from a sample if the
number of events we expect to be farther from the mean than the suspect point,
for the sample’s mean and standard deviation, is less that a half’. The procedure
is as follows:

(1) For your N measurements x1, x2, . . . , xN , calculate the mean, x̄ , and
standard deviation, σN−1.

(2) For the potential outlier, xout, use the error function to find the proba-
bility that a result would randomly differ from the mean by the same
amount, or more:

Pout = 1 − P (x̄ − xout ≤ x ≤ x̄ + xout)

= 1 − [Erf (x̄ + xout; x̄, σ ) − Erf (x̄ − xout; x̄, σ )] .

(3) Multiply the probability of there being such an outlier with the number
of data points, nout = Pout × N .

(4) If the number nout is less than one-half, then Chauvenet’s criterion states
that you reject the outlier xout. One then recalculates the mean and
standard deviation for the remaining N − 1 data points.

This controversial procedure should be applied with care. One should always
ask if there is a possible reason why the outlier occurred. We are assuming that
the data follow a Gaussian distribution, therefore a whole class of potentially
interesting questions about the form of the distribution of measurements from
a particular experiment would be severely compromised by applying Chau-
venet’s criterion. Rejecting outliers is easier to justify when a model of the
expected distribution of the measured variable is known from previous experi-
ments or a theoretical prediction. If there is a limited set of data (for example,
you only had access to the telescope for one night’s observation) consider
removing outliers. A better strategy is to repeat the measurement, revisiting
the settings which produced the outlier if it is reasonably straightforward
to do so.

3.3.3 Experimental example of a Gaussian distribution

Fig. 3.4 Part (a) displays the voltage across
a photodiode as a function of time sampled
2 500 times. In (a) the standard deviation σ is
indicated by the arrow centred on the mean
of the signal (0.4 mV). In (b) the histogram
of the number of occurrences in 0.2 mV bins
is indicated, together with a smooth curve.
The curve is the Gaussian distribution which
has the same mean and standard deviation as
the data. A comparison of what fraction lies
within certain bounds of the mean is encap-
sulated in Table 3.2.

Figure 3.4 shows the signal output from a photodiode as a function of time,
and in part (b) a histogram of the distribution of data. The mean and standard
deviation of the data were calculated, and part (b) also has a Gaussian with the
same mean and standard deviation superimposed on the the data.
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Table 3.2 A comparison between experimental noise and a Gaussian model.

Centred on mean ±σ ±1.65σ ±2σ ±2.58σ ±3σ

Expected values 68% 90% 95% 99.0% 99.7%
Fraction of data points within range 67% 89% 95% 99.3% 99.9%

We can compare the percentage of data points that fall within one, two, etc.
standard deviations of the mean, and compare with the values expected from a
Gaussian distribution. This is shown in Table 3.2 and the agreement between
theory and experiment is excellent.

The fraction of data lying within these bounds is very close to that expected
for a Gaussian distribution. In Chapter 8 we present techniques which allow
us to answer more quantitatively the question ‘how good a fit to the data is the
Gaussian distribution?’.

3.3.4 Comparing experimental results with an
accepted value

If we are comparing an experimentally determined value with an accepted
value, we can use Table 3.1 to define the likelihood of our measurement being
accurate. The procedure adopted involves measuring the discrepancy between
the experimentally determined result and the accepted value, divided by the
experimentally determined standard error. If your experimental result and the
accepted value differ by:

• up to one standard error, they are in excellent agreement;
• between one and two standard errors, they are in reasonable agree-

ment;
• more than three standard errors, they are in disagreement.

3.4 Poisson probability function for
discrete events

The Poisson distribution is the distribution function appropriate to modelling
discrete events. It expresses the probability of a number of relatively rare
events occurring in a fixed time if these events occur with a known aver-
age rate, and are independent of the time since the last event. The con-
ditions under which a Poisson distribution holds are when (Bevington and
Robinson 2003, p. 23):

• counts are of rare events;
• all events are independent;
• the average rate does not change over the period of interest.

One frequently encountered example of these conditions arises when deal-
ing with counting—especially radioactive decay, or photon counting using a
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Geiger tube. Unlike the normal distribution the only parameter we need to
define is the average count in a given time, N . The average count is the product
of the average count rate, λ, and the time for which we count, τ : N = λτ .
For example, in a particular radioactivity experiment the average count rate is
λ = 1.5 s−1, and data are collected for 10 s. The average count expected is
thus 15. Now, for different repeats of the experiment the random character
of radioactive decay will mean there is a fluctuation in the number, N , of
actual counts registered. The Poisson probability distribution is the single-
parameter function which allows us to find the probability that there are exactly
N occurrences (N being a non-negative integer, N = 0, 1, 2, . . .) given the
average count, N . Note that the average count does not have to be an integer:
if counts are only collected for 1 s for this example we would expect a mean
count of N = 1.5. The Poisson probability distribution is defined as:

P
(
N ; N

) = exp
(−N

)
N

N

N !
. (3.11)

Fig. 3.5 Poisson distributions with (a) mean
N = 1.5 and (b) mean N = 15. The prob-
ability of occurrence is plotted against the
number of counts, N . Note the asymmetry of
the distribution about the mean.

The denominator is the factorial function, and is defined such that N ! =
N × (N − 1) × · · · × 3 × 2 × 1. As an example, 4! = 4 × 3 × 2 × 1 = 24.
The functional form of eqn (3.11) is shown in Fig. 3.5 for two Poisson
distributions, with means N = 1.5 and N = 15, respectively. Note that the
Poisson distribution is only defined at integer values of N , i.e. there is some
finite probability of having zero counts in the time τ (0.223 for N = 1.5), a
probability of 0.335 of obtaining one count, etc. Each distribution is peaked
close to the average value, N ; is asymmetric about this value; and, in common
with all proper probability functions, the sum of the probabilities is equal to 1.

We can find the mean and the standard deviation of the Poisson probability
function using the discrete equivalent to eqn (3.3):

N =
∑

P
(
N ; N

)
N , (3.12)

and

N 2 =
∑

P
(
N ; N

)
N 2. (3.13)

Evaluating the summations in eqns (3.12) and (3.13) we find that the average
count (unsurprisingly) is N , and the standard deviation of a Poisson distribu-

tion is simply σ =
√

N = √
λτ . It is worth emphasising again that, in contrast

to the Gaussian distribution, only a single parameter (N ) is needed to specify
a Poisson distribution—the mean and standard deviation are not independent.2 2Most spreadsheet software has built-in func-

tions for evaluating the Poisson distribution.

3.4.1 Worked example—Poisson counts

A safety procedure at a nuclear power plant stops the nuclear reactions in
the core if the background radiation level exceeds 13 counts per minute. In
a random sample, the total number of counts recorded in 10 hours was 1980.
What is the count rate per minute and its error? What is the probability that
during a random one-minute interval 13 counts will be recorded? What is the
probability that the safety system will trip?



30 Uncertainties as probabilities

The number of counts recorded in a minute will follow a Poisson distribu-
tion. The mean count rate is λ = 1980/(10 × 60) = 3.30 counts per minute.
The error in the number of counts is

√
1980 = 44.5; therefore the error in the

count rate is αλ = √
1980/(10 × 60) = 0.07 counts per minute. The probabil-

ity of having 13 counts in a minute is given by the Poisson distribution, with
N = λ × τ = 3.30 and N = 13:

P (N = 13; 3.3) = exp (−3.3) 3.313

13! = 3.3 × 10−5.

To calculate the probability of having 13 or more counts it is, in fact, easier
to evaluate the probability of detecting 12 counts or fewer; these numbers are
complementary.

P (N ≥ 13; 3.3) = 1 − [P (0; 3.3) + P (1; 3.3) + · · · P (12; 3.3)]

= 4.2 × 10−5.

Therefore, based on the number of counts recorded in a minute, the probability
that the safety system will trip is 4.2 × 10−5.

3.4.2 Error bars and confidence limits for Poisson
statistics

For experiments that involve counting rare independent events with a constant
average rate, the Poisson distribution is used.

If an experiment yields a mean count of N the best estimate of the error in
this quantity is

√
N . We therefore report the measurement as N ± √

N .

For Poisson counts the fractional uncertainty is

√
N

N
= 1√

N
. For situa-

tions where the number of counts expected is very low (a weak source, an inef-
ficient detector or a short data collection interval) the Poissonian fluctuations
in the random events lead to a poor signal-to-noise ratio. This phenomenon
was referred to as shot noise in Chapter 1.

Note also the interpretation of the error bar as the standard deviation; having
measured N counts in a given time, we believe there is a two-thirds chance
that another run of the experiment will yield a count in the interval N − √

N to
N + √

N . Owing to the asymmetry of the Poisson distribution one should not
apply blindly the confidence limits for a Gaussian distribution from Table 3.1.

Fig. 3.6 The evolution of the Poisson distri-
bution as the mean increases. The Gaussian
distribution as a function of the continuous
variable x is superimposed. The mean of the
distribution is (a) 1, (b) 3, (c) 10 and (d) 50.

3.4.3 Approximations for high means

A feature of the Poisson distribution which distinguishes it from a Gaussian is
the asymmetric distribution, most prominent for a low mean. However, as the
mean gets larger, the Poisson distribution gets more symmetric, and closely
resembles a Gaussian. Figure 3.6 shows the evolution of the (discrete) Poisson
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function compared with the appropriate (continuous) Gaussian distribution
function, as the mean evolves from 1 to 50.

As the mean becomes large, the Poisson distribution can be approximated
by a normal distribution with the same mean and standard deviation as the
Poisson distribution it is approximating. Recall that for a Poisson distribution,

we have that the standard deviation is defined in terms of the mean, σ =
√

N .
Thus from eqns (3.11) and (3.7) we can write the approximation as:

exp
(−N

)
N

N

N ! � 1

σ
√

2π
exp

[
− (x − x)2

2σ 2

]
� 1√

2πx
exp

[
− (x − x)2

2x

]
,

where we use the continuous variable x for the Gaussian curve.
From Fig. 3.6 it is clear that as the mean increases the Poisson distri-

bution becomes more symmetric and the approximation becomes increas-
ingly good. As a rule of thumb, once N ≥ 35 the asymmetry in the
Poisson distribution is negligible, and it can be approximated to a normal
distribution.

3.5 The central limit theorem

The central limit theorem (CLT) is a theorem from statistics of great
importance; see, for example Squires (2001, Section 3.8) and Lyons (1991,
Section 1.11.3). One way of stating the theorem is as follows: the sum of
a large number of independent random variables, each with finite mean and
variance, will tend to be normally distributed, irrespective of the distribution
function of the random variable.

Note that:

(1) Peculiarly, a normal (Gaussian) distribution is obtained for any distrib-
ution of the individual measurements.3

3‘Any’ should be interpreted here as meaning
any kind of function which is likely to occur
as a distribution function for experimental
measurements; mathematicians will be able
to think of more exotic functions for which
the central limit theorem will not hold.

(2) Equation (2.1), which defines the average, is a sum of a number of
independent random variables. Hence the CLT applies to the statistics
of the evaluation of the mean.

(3) The resulting normal distribution will have the same mean as the par-
ent distribution, but a smaller variance. In fact, the variance is equal
to the variance of the parent divided by the sample size. This is
the mathematical statement which underpins our observation in Sec-
tion 2.7 of the improvement in precision of estimating the mean with
increasing signal-to-noise, and of the reduction of the standard error
(standard deviation of the mean) by a factor of

√
N with respect

to the standard deviation of the sample when N data points are
collected.

(4) The agreement between the distribution of the sum and a Gaussian
only becomes exact in the (unphysical) limit of an infinite number of
measurements. Fortunately, for most ‘reasonable’ distribution functions
(which experimental measurements tend to follow), the agreement is
very good for a small number of measurements.
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Fig. 3.7 Illustration of the central limit theorem. The first column shows four different probability distribution functions. The first three are for
the continuous variable x , and have a mean of x̄ = 0.5. The last is a Poisson distribution with mean count N = 0.5. The second column plots the
outcome of 1000 computer-generated trials of choosing the variable from the appropriate distribution function. There are statistical fluctuations
in the computer-generated data, but the shapes of the sample distributions match those of the population distribution. The third column shows the
results of another computer-generated set of experiments, where five numbers are chosen from the parent distribution and averaged; this procedure
was repeated 1000 times. The distribution of these 1000 means is plotted, and is seen in each case to follow a Gaussian distribution (the continuous
curve superimposed on the histograms). The standard deviation of the distributions in the third column is

√
5 smaller than the parent standard

deviations in the first columns as five data points were used to generate the average.
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(5) We will use the central limit theorem as justification for assum-
ing that the distribution function of interest to us is always a
Gaussian (with the exception of Poisson counting statistics), and apply
quantitative results, such as confidence limits, valid for Gaussian
distributions.

More mathematically, the CLT states that if x1, x2, . . . , xN are N inde-
pendent random variables drawn from any distribution which has a mean x̄
and standard deviation σ , then the distribution of the sample mean, which

is
1

N
(x1 + x2 + · · · + xN ), is normal with a mean x̄ and standard deviation

σ√
N

.

3.5.1 Examples of the central limit theorem

We now give three different examples of the central limit theorem, one of
which uses data generated on a computer; the other two involve actual mea-
surements.

Figure 3.7 shows four different probability density functions in the first
column. The first three are for a continuous variable x , and each has a mean
of x̄ = 0.5. The first distribution is the uniform distribution, the second a
triangular distribution (both of the above have the range 0 ≤ x ≤ 1). The third
is a Gaussian distribution of mean x̄ = 0.5 and standard deviation σ = 0.3.
The fourth is a discrete Poisson distribution, with a mean count of N = 0.5.
The second column shows the results of trials where 1000 points are chosen
according to the relevant probability distribution function. Unsurprisingly,
these figures have statistical noise, but are seen to have the same shape as the
corresponding mathematical function. The third column depicts the result of
1 000 trials, each of which chose five samples from the appropriate distribution
and from which the mean was calculated. The distribution of the means is
shown here. There are three things to note: (i) irrespective of the shape of
the initial probability distribution function, the histogram of the means is well
described by a normal distribution; (ii) the distribution of means is peaked at
0.5, the mean of the original distributions; (iii) the width of the distribution of
means is less than the width of the original probability distribution functions,
by a factor

√
N . This is a manifestation of the reduction of the standard

deviation of the means by
√

5 with respect to the standard deviation of the
original probability distribution functions, in agreement with the discussion of
the standard error in Chapter 2. These three outcomes are in agreement with
the predictions of the central limit theorem.

Fig. 3.8 Part (a) shows the result of a
radioactive decay experiment. 423 counts
were recorded in 58 seconds; the histogram
shows the occurrences of the number of
counts in one-second intervals about a mean
of 7.3 counts per second. On repeating this
experiment 51 times, it is possible to plot the
distribution of the means, as is done in (b).
Here it is seen that the distribution of means
is (i) well described by a Gaussian, and (ii)
significantly narrower than the sample Pois-
son distribution.

An example of a situation where the distribution of measurements is non-
Gaussian is radioactive decay, for which a Poisson distribution is obtained. Fig-
ure 3.8(a) shows a typical histogram obtained after making 58 measurements of
1 s duration. The mean number of counts per second is 7.2, and the histogram
shows the characteristic asymmetric profile of a Poisson distribution. As an
illustration of the central limit theorem the experiment was repeated another
50 times. Figure 3.8(b) shows the distribution of the means of the 51 trials,
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together with the best-fit Gaussian distribution. It is evident that the distribution
of the means is symmetric, unlike the distribution of individual counts. A
discussion of how well the experimental results follow the theoretical model
is delayed until Chapter 8. The last example we discuss here is depicted in
Fig. 3.9. The national lottery in the UK has six balls chosen at random from a
set numbered 1, . . . 49. The occurrence of any particular ball should be inde-
pendent of the others, hence the relevant distribution function is the uniform
one. Figure 3.9(a) shows the outcomes of all 106 draws in the year 2000. The
distribution of individual balls is seen to be approximately uniform, centred on
the mean of 13 occurrences per ball. Figure 3.9(b) shows the average number
of the six balls for the 106 draws; the average is obtained by summing the
six integer ball numbers, and dividing by six. Once again, although the parent
probability distribution function is uniform, the distribution of means is seen
to follow a Gaussian distribution, in accordance with the central limit theorem.
Further analysis of the mean and standard deviation of the distributions is
detailed in Exercise (3.10).

Fig. 3.9 Part (a) shows a histogram of the
occurrences of the 49 balls in all 106 national
lottery draws for the year 2000. If there was
no bias a uniform distribution of 13 occur-
rences per ball would be expected; the exper-
imental data are in good agreement with this
within the statistical fluctuations. Six balls
are chosen in each draw, the average number
was calculated, and the histogram of the 106
results is plotted. As expected, a Gaussian
distribution is obtained for the means, with
a narrower standard deviation (by a factor of√

6) compared with the parent distribution.

Why is the distribution of means narrower than the distribution of the
individual measurements? Consider the lottery example again. The smallest
possible mean is 3.5, which is achieved uniquely from the numbers 1, 2, 3,
4, 5 and 6. In contrast, to obtain a mean of 25 we could have 22, 23, 24, 26,
27 and 28; or 1, 22, 25, 26, 27 and 49; or 1, 10, 25, 26, 39 and 49; or 3, 9,
14, 31, 45 and 48; or . . .. There are many more sets of six integers chosen at
random from 1–49 with a mean of 25 than there are with a mean of 3.5. The
argument holds for means much larger than the most likely one also: 44, 45,
46, 47, 48 and 49 is the only combination which yields the highest possible
mean of 46.5. As each random sequence is as likely as any other one, it is far
more likely statistically to obtain six numbers with a mean around 25 than 3.5.
Consequently, the width of the distributions of means is significantly narrower
than the distribution of individual numbers.

Chapter summary

• For a continuous probability distribution function PDF (x), the proba-
bility, P , that x lies between two values x1 and x2 is given by the area
under the curve: P (x1 ≤ x ≤ x2) = ∫ x2

x1
PDF (x) dx .

• The variance, σ 2, is the mean of the square minus the square of the
mean: σ 2 = x2 − x̄2.

• The standard deviation is the square root of the variance.
• The Gaussian, or normal, distribution function is specified by its centre

and standard deviation: G (x; x̄, σ ) = 1

σ
√

2π
exp

[
− (x − x̄)2

2σ 2

]
.

• For a Gaussian distribution 68% of the data are expected to lie within
the standard deviation of the mean; 95% of the data are expected to
lie within two standard deviations of the mean; 99.7% of the data are
expected to lie within three standard deviations of the mean.
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• The distribution of discrete counts, e.g. radioactive decays, follow a

Poisson distribution P
(
N ; N

) = exp
(−N

)
N

N

N !
.

• Only the mean, N , is needed to specify a Poisson distribution.
• If N counts are detected in a given time, the error on this is

√
N .

Exercises

(3.1) Discrete or continuous
Which of the following variables are discrete, and which
continuous? (i) The number of marks awarded for an
examination paper; (ii) the height of adult males; (iii) the
concentration of CO2 in the atmosphere; (iv) the charge
stored in a capacitor; and (v) the monthly salary of uni-
versity employees.

(3.2) Uniform distribution
A probability distribution function of interest in error
analysis is the uniform distribution. It is defined as

PU (x; x̄, a) =
{

1/a if x̄ − a/2 ≤ x ≤ x̄ + a/2,

0 otherwise.

Here the parameter x̄ is the mean of the distribution,
and a is the interval in which the probability distribution
is uniform. Show that (i) the distribution PU (x; x̄, a) is
normalised; (ii) the mean of the distribution is indeed x̄ ;

(iii) the standard deviation is given by σ = a√
12

.

(3.3) Normal distributions
Consult a reference resource and list three examples of
naturally occurring distributions which are known to fol-
low a Gaussian distribution.

(3.4) Confidence limits for a Gaussian distribution
Verify the results of Table 3.1 for the fraction of the
data which lies within different ranges of a Gaussian
probability distribution function. What fraction of the
data lies outside the following ranges from the mean?
(i) ±4σ and (ii) ±5σ . What is the (symmetric) range
within which the following fractions of the data lie? (i)
50% and (ii) 99.9%.

(3.5) Calculations based on a Gaussian distribution
Bags of pasta are sold with a nominal weight of 500 g. In
fact, the distribution of weight of the bags is normal with
a mean of 502 g and a standard deviation of 14 g. What
is the probability that a bag contains less than 500 g? In

a sample of 1000 bags how many will contain at least
530 g?

(3.6) Identifying a potential outlier
Seven successive measurements of the charge stored on a
capacitor (all in μC) are: 45.7, 53.2, 48.4, 45.1, 51.4, 62.1
and 49.3. The sixth reading appears anomalously large.
Apply Chauvenet’s criterion to ascertain whether this
data point should be rejected. Having decided whether
to keep six or seven data points, calculate the mean,
standard deviation and error of the charge.

(3.7) Calculations based on a Poisson distribution (1)
In the study of radioactive decay 58 successive experi-
ments for one second yielded the following counts (these
are the data plotted in Fig. 3.8).

N 1 3 4 5 6 7
Occurrence 1 2 3 6 9 11

N 8 9 10 11 12 13
Occurrence 8 8 6 2 1 1

Calculate (i) the total number of counts recorded; (ii) the
mean count; and (iii) the mean count rate. Assuming that
the data are well described by a Poisson distribution and
that another 58 one-second counts are recorded, calculate
(i) the expected number of occurrences of five counts
or fewer; (ii) the expected number of occurrences of 20
counts or more.

(3.8) Calculations based on a Poisson distribution (2)
In the study of radioactive decay during a one-minute
period 270 counts are recorded. Calculate: (i) the mean
count rate; (ii) the error in the mean count rate; and
(iii) the fractional error in the mean count rate. Were
the experiment to be repeated with a 15-minute count-
ing interval, what is (iv) the expected count; and (v) the
probability of obtaining exactly 270 × 15 counts?
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(3.9) Approximation for high means
Plot a histogram of a Poisson distribution with mean
35. Using the same axes plot the continuous function of
a Gaussian with a mean of 35, and standard deviation√

35. Comment on similarities and differences between
the distributions.

(3.10) An example of the central limit theorem
The lottery results encapsulated in Fig. 3.9 are based
on six numbers being selected from the integers
1, 2, . . . , 49. The distribution of these numbers should
follow the functional form given in Exercise (3.2). Use

the results of that exercise to predict the mean and stan-
dard deviation expected for this distribution. How do
these compare with the results for the year 2000, with
a mean of 25.4, and standard deviation 14.3? The lottery
has six numbers selected, with the mean readily calcu-
lated. Based on the central limit theorem we expect the
distribution of the means to follow a Gaussian distribu-
tion with a standard deviation which is

√
6 smaller than

the original distribution. What do you predict for the
mean and standard deviation of the means? How do these
compare with the results for the year 2000, with a mean
of 25.4, and standard deviation 5.7?
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The aim of most experiments in the physical sciences is to combine several
variables into a single quantity. The error on the combined value is a function
of the errors on the constituent terms. As the addition of probabilities is not
linear, simply summing the errors of the constituent terms gives an overes-
timate of the error in the combined variable. In this chapter we show how
errors can be propagated through single and multi-variable functions using a
functional approach (highly amenable to spreadsheet analysis) and a calculus-
based approximation. We provide look-up tables for commonly encountered
functions and discuss experimental strategy based on the dominant error.

4.1 Propagating the error in a single-variable
function

If one measures a variable A to have a mean Ā and standard error αA,
it is instructive to see how it propagates through a single-variable function
Z = f (A). The best estimate of Z will be Z̄ = f

(
Ā
)
. In contrast, the uncer-

tainty in Z is a function of both A and its uncertainty.
In Fig. 4.1 we show Bragg’s law which relates the X-ray wavelength, λ, to

the incident Bragg angle, θ . In this example, λ = f (θ), or more explicitly:

λ = 2d sin θ. (4.1)

For a given angle, θ̄ , one can calculate the wavelength through eqn (4.1).
However, as eqn (4.1) contains a nonlinear relationship, the uncertainty in
wavelength, αλ, depends both on the angle, θ , and its uncertainty, αθ . Note
that in Fig. 4.1(b) a symmetric error in the angle, αθ , maps into an asymmetric
error in wavelength.

θ – αθ θ + αθθ

λ – αλ

λ + αλ

λ

Fig. 4.1 (a) A plot of Bragg’s law relating the
X-ray wavelength, λ, to the incident angle, θ ,
for a Si single crystal. (b) Enlarged section
showing how an uncertainty in the incident
angle, αθ , maps directly into an uncertainty
in wavelength, αλ. As this is a nonlinear rela-
tionship αλ depends both on θ and αθ .

If αA represents the error on the mean Ā, the error in the function Z , αZ ,
can be found by propagating Ā ± αA through the function. Thus:

Z̄ ± αZ = f
(

Ā + αA
)
, (4.2)

Z̄ = f
(

Ā
)
, (4.3)

Z̄ ∓ αZ = f
(

Ā − αA
)
. (4.4)

The origin of the ± signs in eqn (4.2) and (4.4) is as follows: f
(

Ā + αA
)

will
give Z̄ + αZ if the gradient of f (A) with respect to Z is positive, and Z̄ − αZ
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if the gradient of f (A) is negative. The error propagation using eqns (4.2) and
(4.4) is shown schematically for Bragg’s law in Fig. 4.1(b). As the gradient of
f (θ) with respect to λ is positive, f

(
θ̄ + αθ

)
returns the positive error in λ.

4.1.1 The functional approach for
single-variable functions

Spreadsheets greatly facilitate the propagation of errors in a single-variable
function. The error (assumed here to be symmetric) in Z for a particular
measurement Ā is simply:

αZ = ∣∣ f
(

Ā + αA
) − f

(
Ā
)∣∣ . (4.5)

This relationship is valid for any single-variable function. Many commonly
encountered data-analysis packages include built-in functions such as standard
trigonometric functions, logarithms, exponentials, powers and even special
functions such as Bessel and gamma. The argument of the function can easily
be calculated at Ā and Ā ± αA, enabling a quick determination of the error in
Z using eqn (4.5).

Fig. 4.2 The error in the wavelength, αλ, as
a function of incident angle, θ , using Bragg’s
law. The error in the incident angle, αθ , is a
constant 0.050◦. The error in the wavelength
has a cosine dependence on the angle.

Returning to the Bragg’s law example, eqn (4.5) can be used to calculate
the error in the wavelength as a function of the incident angle; this is shown in
Fig. 4.2. An uncertainty of αθ = 0.050◦ will give an error of αλ = 0.92 pm at
θ = 15◦ and αλ = 0.25 pm at θ = 75◦. The error as a function of incident
angle is, in fact, a cosine function for reasons that will become clear in
Section 4.1.2.

4.1.2 A calculus-based approximation for
single-variable functions

We have seen in Fig. 4.1 how the error could be propagated through a
single-variable function. An approach based on calculus is highlighted in
Fig. 4.3 where a nonlinear function, Z = f (A), and its tangent at point
P = (

Ā, f
(

Ā
))

are sketched. The gradient of the tangent can be found using

the triangle P Q R where the gradient of the tangent is
Q R

P Q
.

Ā

f (Ā )

Q

R

P
αA

αZ

S

Z = f(A)

Fig. 4.3 The upper part shows a nonlinear
function Z = f (A) and its tangent at Ā. The
lower part shows an expanded view in the
vicinity of Ā: the four points P , Q, R and S
have co-ordinates

(
Ā, f

(
Ā
))

,
(

Ā + αA,

f
(

Ā
))

,
(

Ā + αA, f
(

Ā
) + d f

dA × αA

)
and(

Ā + αA, f
(

Ā + αA
))

, respectively.

In the limit that αA is small we can approximate the coordinates of R and
S to be equal. (This is equivalent to retaining only the first two terms of the
Taylor series expansion of eqn (4.5) and is discussed further in Section 4.2.3.)
Mathematically, using the coordinates from Fig. 4.3(b), we can write:

f
(

Ā
) + d f (A)

dA
αA = f

(
Ā + αA

)
, (4.6)

which, using eqn (4.5) and recalling that
dZ

dA
≡ d f (A)

dA
, leads to the general

result for a single-variable function:

αZ =
∣∣∣∣dZ

dA

∣∣∣∣ αA. (4.7)
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There are three things to note about eqn (4.7). Firstly, the modulus sign
for the gradient ensures that the error in Z is a positive number. Secondly,
the calculus method predicts symmetric error bars—in contrast the functional
approach of eqns (4.2) and (4.4) allows for asymmetric error bars. Thirdly, this
result is only valid for small errors.

The calculus approximation requires the ability to calculate the derivative
of the function at specific arguments. For complicated functions, these cal-
culations can become non-trivial. There are certain functions, for example
Z (θ) = sin−4 (θ/2), for which the spreadsheet approach is considerably sim-
pler than the calculus approach.1 1The function sin−4 (θ/2) describes the

angular dependence of the differential cross-
section in Rutherford scattering.

4.1.3 Look-up table for common single-variable functions

We can use the calculus method, eqn (4.7), to derive a look-up table to help
propagate errors through commonly encountered single-variable functions; see
Table 4.1.

Table 4.1 Results for the propagation of errors in single-variable functions.
The results for the trigonometric functions assume that the angles and their
errors are in radians.

Function, Z (A)
dZ

dA
Error

1

A
− 1

A2
αz = αA

A2
= Z2αA OR

∣∣∣αZ

Z

∣∣∣ =
∣∣∣αA

A

∣∣∣
exp A exp A αz = exp A αA = Z αA

ln A
1

A
αz = αA

A

log A
1

ln (10) A
αz = αA

ln (10) A

An n An−1 αz =
∣∣∣n An−1

∣∣∣αA OR
∣∣∣αZ

Z

∣∣∣ =
∣∣∣n αA

A

∣∣∣
10A 10A ln (10) αz = 10A ln (10) αA

sin A cos A αz = |cos A| αA

cos A − sin A αz = |sin A| αA

tan A 1 + tan2 A αz =
(

1 + Z2
)

αA

4.1.4 Worked example—single variable function

We will illustrate both approaches to the propagation of errors through the
single-variable function Z = 10A. Suppose we had measured A = 2.3 ± 0.1.
What is the value of Z and its error?

Our best estimate of Z is the mean, Z̄ = 102.3 = 199.5. We defer the round-
ing of the mean until the error has been calculated.



40 Error propagation

(a) Calculating the error in Z using the functional approach:
The errors in Z are:

α+
Z = 102.3+0.1 − 102.3 = 51.7,

and

α−
Z = 102.3 − 102.3−0.1 = 41.0.

We therefore say that our best estimate of Z lies within the range
158 ≤ Z̄ ≤ 251. An approximation to the symmetric error bar can be
found by quoting the average error bar. As we only know the uncertainty
in A to one significant figure, we report our best estimate of Z as
Z = (2.0 ± 0.5) × 102. An alternative way to report this result, which

keeps the assymetry of the error bar, is Z =
(

2.0+0.5
−0.4

)
× 102.

(b) Calculating the error in Z using the calculus approximation and the look-
up tables:

αZ = Z ln (10) αA = 199.5 × ln (10) × 0.1 = 45.9,

again, as we only know the uncertainty in A to one significant figure, we
quote

Z = (2.0 ± 0.5) × 102.

We note that it is only the functional approach that shows the asymmetry
in mapping the errors in A to those in Z . As the error is relatively small, the
calculus method is a good approximation and the two methods yield identical
results.

For larger errors in A the calculus approximation becomes less reliable. Sup-
pose we had measured A = 2.3 ± 0.4 instead. Our best estimate of Z remains
unchanged. Calculating the errors using the functional approach shows Z now
lies within the range 79 ≤ Z̄ ≤ 501. We illustrate the asymmetry of the error

bar2 by reporting our result as Z =
(

2+3
−1

)
× 102. In contrast, the calculus-

2The asymmetry of the error bars determined
using the functional approach indicate that
the distribution of Z is not Gaussian. We
therefore do not know trivially the confidence
limits to which these error bars correspond,
and cannot blindly apply the results from
Chapter 3. based approach yields Z = (2 ± 2) × 102.

4.2 Propagating the error through
a multi-variable function

In many cases the function through which we wish to propagate our errors
is multi-variable. One needs to map a series of measurements, A, B, C, . . .

and their associated errors through the function Z = f (A, B, C, . . .). As
in the case for a single-variable function, our best estimate of Z is made
through the mean values of the parameters Z̄ = f

(
Ā, B̄, C̄, . . .

)
. As before,

the error in Z is a function of both the mean values and their errors:
αZ = f

(
Ā, B̄, C̄, . . . ;αA, αB , αC , . . .

)
.
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4.2.1 The functional approach for multi-variable functions

Consider first a function of two variables, Z = f (A, B). The equivalent of
Fig. 4.1 is now a two-dimensional surface, as shown in Fig. 4.4 (a). Our best
estimate of Z is a point on the surface given by Z̄ = f

(
Ā, B̄

)
. The error in Z

comprises two components. One component is the change in Z (the height of
the surface) around the mean when A is varied and B is kept constant, as seen
in Fig. 4.4 (b). This change of height is:

αA
Z = f

(
Ā + αA, B̄

) − f
(

Ā, B̄
)
. (4.8)

Similarly, as shown in Fig. 4.4(c), there is also a change in the surface around
the mean when B is changed and A remains fixed:

αB
Z = f

(
Ā, B̄ + αB

) − f
(

Ā, B̄
)
. (4.9)

To proceed, we need to assume that the uncertainties in A and B are uncor-
related and that A and B are independent variables. (An independent
variable is not correlated with either the magnitude or error of any other
parameter.) The total error in Z is obtained by applying Pythagoras’ the-
orem and adding the components in quadrature. For N independent vari-
ables we apply Pythagoras’ theorem in N dimensions to obtain the general
result:

(αZ )2 =
(
αA

Z

)2 +
(
αB

Z

)2 +
(
αC

Z

)2 + · · · (4.10)

We see in Fig. 4.4 that eqn (4.10) can be written in functional form as:

f(
A

, 
B

)
f(

A
, 
B

)
f(

A
, 
B

)
A A + αA

B B + αB

Fig. 4.4 (a) A two-dimensional surface plot
of the function Z = f (A, B). (b) A slice
along the A-axis when B is kept at its mean
value B̄. The change in height of the sur-
face, αA

Z , owing to a displacement αA along
the A-axis from the point Z̄ = f

(
Ā, B̄

)
is

f
(

Ā + αA, B̄
) − f

(
Ā, B̄

)
. (c) A slice along

the B-axis when A is kept at its mean
value Ā. The change in height of the sur-
face, αB

Z , owing to a displacement αB along
the B-axis from the point Z̄ = f

(
Ā, B̄

)
is

f
(

Ā, B̄ + αB
) − f

(
Ā, B̄

)
. Pythagoras’ the-

orem relates the total error, αZ , to the compo-

nents: (αZ )2 =
(
αA

Z

)2 +
(
αB

Z

)2
.

(αZ )2 = [
f
(

Ā + αA, B̄, C̄, . . .
) − f

(
Ā, B̄, C̄, . . .

)]2

+ [
f
(

Ā, B̄ + αB, C̄, . . .
) − f

(
Ā, B̄, C̄, . . .

)]2

+ [
f
(

Ā, B̄, C̄ + αC , . . .
) − f

(
Ā, B̄, C̄, . . .

)]2

+ · · · (4.11)

As we discussed for the single-variable case, this approach is very amenable
to spreadsheet analysis as the error in Z is found by quickly re-evaluating the
function with different arguments. It is straightforward to see how eqn (4.2)
and eqn (4.4) can be used to look for asymmetries in the error bars when prop-
agating an error in the single-variable case. However, in N -dimensions this
becomes difficult, and eqn (4.11) assumes that the magnitude of the variation
in the function Z is the same when an independent variable is either increased
or decreased by an error bar around its mean position. This approximation
usually holds for small errors but one should be careful if the function is highly
nonlinear, or the error bars are large. In such cases, it is wise to look more
carefully at the error surface, a concept which is discussed in more detail in
Chapter 6.
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4.2.2 Worked example—functional approach
for multi-variable functions

The van der Waals equation of state for a gas is33The van der Waals equation of state is a cor-
rection to the ideal gas law. The coefficients
a and b take into account, respectively, the
attraction between the constituents of the gas,
and the volume excluded owing to the finite
size of the atoms or molecules. Both of these
terms are assumed to be zero in the case of
an ideal gas. These specific corrections to the
ideal gas law were proposed by Johannes van
der Waals in 1873.

(
P + a

V 2
m

)
(Vm − b) = RT, (4.12)

where P is the pressure, Vm is the molar volume, T is the absolute temper-
ature, R is the universal gas constant, with a and b being species-specific
van der Waals coefficients. Calculate (i) the pressure of a sample of nitrogen
with molar volume Vm = (2.000 ± 0.003) × 10−4 m3 mol−1 at a temperature
of T = 298.0 ± 0.2 K, given the van der Waals coefficients for nitrogen
are a = 1.408 × 10−1 m6 mol−2 Pa, and b = 3.913 × 10−5 m3 mol−1; (ii) the
uncertainty in the pressure. Take R to be 8.3145J K−1 mol−1.

(i) Rearranging eqn (4.12) to make P the subject gives

P (Vm, T ) = RT

Vm − b
− a

V 2
m

. (4.13)

Inserting the numbers from the question, and recalling that
1 J ≡ 1 m3 Pa, we obtain the best estimate for the pressure of the gas

P
(
Vm, T

) = 11.882 MPa.

Note we keep five significant figures at this stage; the number of sig-
nificant figures we report for the mean is ascertained after the error has
been calculated.

(ii) The uncertainties in both temperature and molar volume contribute to
the uncertainty in the pressure. To use eqn (4.11) we need to evaluate
P
(
Vm + αV , T

)
and P

(
Vm, T + αT

)
. Explicitly, the expressions are:

P
(
Vm + αV , T

) = RT

Vm + αV − b
− a(

Vm + αV
)2

= 11.866 MPa,

and

P
(
Vm, T + αT

) = R
(
T + αT

)
Vm − b

− a

Vm
2

= 11.892 MPa.

The contribution to the error in the pressure due to the temperature is
αT

P = P
(
Vm, T + αT

) − P
(
Vm, T

)
, and similarly for the contribution

to the error due to the volume, αV
P . These contributions are evaluated to

be

αT
P = 0.010 MPa, αV

P = 0.016 MPa.

As both contributions are similar, eqn (4.10) is used to find the uncer-
tainty in P:

αP =
√(

αT
P

)2 + (
αV

P

)2 = 0.019 MPa.
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As the uncertainties in T and Vm were quoted to one significant figure,
we quote the uncertainty in P to one significant figure: αP = 0.02 MPa.
Finally, we decide how many decimal places to retain for the mean, and
quote the result as P = 11.88 ± 0.02 MPa.

4.2.3 A calculus approximation for multi-variable
functions

A calculus-based approximation for the propagation of errors through multi-
variable functions can be derived by Taylor series expansion4 of the terms

4Taylor’s theorem enables a function to
be expanded in a power series in x in a
given interval, and states that if f (x) is a
continuous, single-valued function of x with

continuous derivatives f
′
(x) , f

′′
(x) , . . .

in a given interval, then f (x) = f (a) +
(x−a)

1! f
′
(a) + (x−a)2

2! f
′′

(x) + · · · . An
alternative form, as used in the text, may be
obtained by changing x to a + x .

in square brackets in eqn (4.11). This procedure yields, for each term in
eqn (4.11), an expression similar to:

f
(

Ā + αA, B̄, C̄, . . .
) = f

(
Ā, B̄, C̄, . . .

) + ∂ f

∂ A

∣∣∣∣
A= Ā

× αA

+1

2

∂2 f

∂ A2

∣∣∣∣∣
A= Ā

× α2
A + · · · (4.14)

Equation (4.14) contains the function evaluated at the mean, and subsequent
terms proportional to the partial derivatives of the function. An implicit
assumption of the calculus-based approximation is that the magnitude of the
error is small. Thus, second and higher order derivate terms are negligible com-
pared to the gradient term and consequently are not included. In the derivation
of eqn (4.11) we assumed that the variables were independent, thus cross-terms

involving products of uncertainties in two variables,
∂2 f

∂ A∂ B
× αAαB , average

to zero.5 5The cross-terms will be important in con-
structing the covariance matrix in Chapter 7.Equation (4.14) thus gives the error in the function Z due to deviations in

the variable A:

f
(

Ā + αA, B̄, C̄, . . .
) − f

(
Ā, B̄, C̄, . . .

) =
(

∂ f

∂ A

∣∣∣∣
A= Ā

× αA

)
. (4.15)

We recognise this as a combination of the results of eqns (4.5) and (4.7). Hence
the generalisation of eqn (4.7) to obtain an expression for the error in a multi-
variable function Z = f (A, B, C, . . .) using the calculus approximation is:

(αZ )2 =
(

∂ Z

∂ A

)2

(αA)2 +
(

∂ Z

∂ B

)2

(αB)2 +
(

∂ Z

∂C

)2

(αC )2 + · · · (4.16)

Equation (4.16) highlights the fact that the contributions to the total
error from independent variables are summed in quadrature, as depicted
in Fig. 4.5. ∂Z

∂A

∂Z
∂B

αA

αB

αZ

Fig. 4.5 As A and B are independent vari-
ables their contributions to the error in Z are
orthogonal. The total error in Z is obtained
by adding the contributions from A and B in
quadrature, subject to Pythagoras’ theorem.

4.2.4 A look-up table for multi-variable functions

We can apply the general calculus-based approximation for some common
functions to produce a look-up table; see Table 4.2.
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Table 4.2 Some simple rules for the propagation of errors in multi-variable functions.
Always perform a quick check for dominant errors before using these formulae.

Function, Z (A) Expression used to calculate αZ

Z = A + B
}

αZ =
√

(αA)2 + (αB )2
Z = A − B

Z = A × B
⎫⎬⎭ αZ

Z
=

√(αA

A

)2 +
(αB

B

)2

Z = A

B

Z = An
∣∣∣αZ

Z

∣∣∣ =
∣∣∣n αA

A

∣∣∣
Z = k A αZ = |k| αA OR

∣∣∣αZ

Z

∣∣∣ =
∣∣∣αA

A

∣∣∣
Z = k

A

B

αZ

Z
=

√(αA

A

)2 +
(αB

B

)2

Z = k
An

Bm
αZ

Z
=

√(
n

αA

A

)2 +
(

m
αB

B

)2

Z = A + B − C + D αZ =
√

(αA)2 + (αB )2 + (αC )2 + (αD)2

Z = (A × B)

(C × D)

αZ

Z
=

√(αA

A

)2 +
(αB

B

)2 +
(αC

C

)2 +
(αD

D

)2

Z =
(

An × Bm)
(C p × Dq )

αZ

Z
=

√(
n

αA

A

)2 +
(

m
αB

B

)2 +
(

p
αC

C

)2 +
(

q
αD

D

)2

4.2.5 Comparison of methods

We will illustrate the two approaches to the propagation of errors through the
multi-variable function:6

6This is a commonly encountered function
for the amplitude-reflection coefficient of a
wave at a boundary between two media of
impedance A and B.

Z = (A − B)

(A + B)
. (4.17)

Suppose we have measured Ā = 1000 and B̄ = 80 both with 1% errors. Our

best estimate of Z is Z̄ =
(

Ā − B̄
)(

Ā + B̄
) = 0.852.

(a) Calculating the error in Z using the calculus approximation: The error
in Z is:

(αZ )2 =
(

∂ Z

∂ A
· αA

)2

+
(

∂ Z

∂ B
· αB

)2

=
(

2B

(A + B)2
· αA

)2

+
( −2A

(A + B)2
· αB

)2

.
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This gives, for the error in Z , αZ = 0.00194. As the errors in A and
B are only quoted to one significant figure we report that Z = 0.852 ±
0.002.

(b) Calculating the error in Z using the functional approach:

(αZ )2 = [
f
(

Ā + αA, B̄
)− f

(
Ā, B̄

)]2+ [
f
(

Ā, B̄ + αB,
)− f

(
Ā, B̄

)]2
.

Using a spreadsheet to calculate the function at each argument:

f
(

Ā, B̄
)= 0.8519, f

(
Ā + αA, B̄

)= 0.8532, f
(

Ā, B̄ + αB
) = 0.8505

allows the error bar to be found, αZ = 0.00193. As the errors in A and
B are only quoted to one significant figure we report that Z = 0.852 ±
0.002.

The two methods give identical results. Note also that during any arith-
metic calculation it is advisable to reduce the effects of rounding errors by
maintaining a suitable number of significant figures and only rounding to the
appropriate number of significant figures at the end.

4.2.6 Percentage errors—dominant error

Many of the expressions for the propagation of errors that arise in Table 4.1 are
represented by the percentage error. It is frequently possible to bypass the need
to use the rigorous expression if one performs a quick back of the envelope
calculation. For example, if Z = A × B × C × D, and A is known to 5%, RULE OF THUMB: Perform a quick calcu-

lation to identify any dominant errors. Con-
sider whether a more rigorous calculation is
useful.

and B, C and D to 1%, what is the percentage error in Z? The experienced
practitioner will not have to use the appropriate formula from Table 4.2 as the
addition of the percentage errors in quadrature will yield, to one significant
figure, 5%.

4.2.7 Using the look-up tables

The look-up tables are ideal for propagating errors in multi-variable functions,
particularly when summation or multiplication are involved. For example, the
resonant frequency, f0, in a circuit with an inductance, L , and capacitance,
C , is:

f0 = 1

2π

1√
LC

. (4.18)

The inductance and its error can be found by measuring the resonant frequency
and the capacitance. The error in L can be found directly from the look-up
tables:

L = 1

4π2 f 2
0 C

⇒
(αL

L

)2 =
(

2
α f0

f0

)2

+
(αC

C

)2 = 4

(
α f0

f0

)2

+
(αC

C

)2
.

(4.19)
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Note the factor of 4 in the contribution to the square of the percentage error in
the inductance that arises on account of the inverse-squared dependence on the
resonant frequency.

Occasionally the function of interest does not appear directly in the
tables. Fortunately, the terms in the look-up table are applicable, after
suitable modification, to many single-variable functions as well. For
example:

Z (A, B) = k A + B, (4.20)

where k is a constant. We can make the substitution X (A) = k A. Then the
function Z (A, B) becomes Z = X (A) + B. This functional form can be
found in look-up Table 4.2, giving the error in Z as:

αZ =
√

(αX )2 + (αB)2. (4.21)

We now need to calculate explicitly αX , which is also in look-up Table 4.2:

X (A) = k A ⇒ αX = kαA. (4.22)

Finally, we can substitute eqn (4.22) back into eqn (4.21) to find the expression
for the error on Z :

αZ =
√

k2 (αA)2 + (αB)2. (4.23)

4.2.8 Using the look-up tables—health warning

It is important to ensure that the independence of the variables is maintained
when making a substitution. The look-up tables are only valid for single-
variable functions or variables. Recalling the example of eqn (4.17):

Z = (A − B)

(A + B)
.

One might be tempted to use the look-up tables and make the substitutions
X (A, B) = (A − B) and Y (A, B) = (A + B) such that Z = X/Y . If we then
use the tables to compute the error it comes out to be αZ = 0.012, an order of
magnitude larger than the correct value. This is because X and Y are now no
longer independent variables but are correlated.

Fig. 4.6 The phase shift, δ, between two sine
waves can be measured using the Lissajous
method with an oscilloscope. The phase shift
is the origin of the ellipticity of the ellipse in
the figure, and is related to the quantities A

and B via the equation δ = arcsin
(

A
B

)
.

Only substitute single-variable functions when using the look-up tables.
Recall that the look-up tables are only valid for independent variables
or single-variable functions.
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4.3 Propagating errors in functions—a
summary

In practice, error analysis is often an exercise that requires different approaches
for different situations. We have detailed above the standard methods, but
common sense should always be applied. To summarise the above:

• For simple functions which involve summation, multiplication and pow-
ers the look-up tables are the most convenient method.

• The calculus-based approach is only useful if the derivatives are easy to
calculate.

• The functional approach, in which the function is calculated for various
arguments, is particularly suitable for spreadsheet analysis.

Often a hybrid approach proves to be the most efficient method for deter-
mining the error in a multi-variable function. For example, consider the case
depicted in Fig. 4.6 where the angle δ is defined as the arcsine of the ratio of
A and B,

δ = arcsin

(
A

B

)
. (4.24)

In this case one could define a variable C = A/B. Using the look-up tables the
error in C is quickly identified as:

αC = C

√(αA

A

)2 +
(αB

B

)2
. (4.25)

Given that C and its error have been determined, the easiest method to
calculate the error in δ is through the functional approach. This method has
the added advantage that, because arcsine is nonlinear, one could calculate the
asymmetric error bars if the errors in C were large:

α±
δ = ∣∣arcsin

(
C̄
) − arcsin

(
C̄ ± αC

)∣∣ . (4.26)

Some of the issues regarding error propagation with a nonlinear function
are highlighted in Fig. 4.7. Arcsine is a multi-valued function, i.e. there are
many angles whose sine is 0.5. Care has to be exercised in deciding which
branch of the function to choose. Arcsine is an example of a function whose
argument has a restricted range; specifically −1 ≤ C ≤ 1. In Fig. 4.7(b) the
argument is small, and eqn (4.26) can be used to calculate the assymetric error
bars. In contrast, as depicted in Fig. 4.7(c), if the argument is large it will not
be possible to use eqn (4.26) to calculate α+

δ when C̄ + αC > 1.
Fig. 4.7 (a) As arcsine is a multi-valued
function, care has to be exercised in decid-
ing which branch of the function to choose.
In addition, the argument of arcsine has the
restricted range −1 ≤ C ≤ 1. In (b) the argu-
ment is small, and eqn (4.26) is used to cal-
culate the assymetric error bars. (c) When
C̄ + αC > 1 it will not be possible to use
eqn (4.26) to calculate α+

δ .

4.4 Experimental strategy based on
error analysis

The uncertainties in A, B, C , etc. can have very different effects on the magni-
tude of the error in Z depending on its functional form. One should always con-
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centrate on reducing the dominant error, and not waste time trying to reduce
the error on parameters which do not contribute significantly to the error on Z .

One example that is often encountered is when the functional form includes
high-order powers. For example, the formula for the density, ρ, of a sphere of
radius r and mass m is:

ρ = m

V
= 3m

4πr3
. (4.27)

The different dependence on the parameters m and r of the density are shown
in Fig. 4.8. Preliminary readings indicate that both the mass and radius were
determined to a precision of 1%, and the radius to 1%. What should the strategy
be to obtain the most precise measurement of the density?

From the look-up tables the fractional error in the density is:

αρ

ρ
=

√
9
(αr

r

)2 +
(αm

m

)
=

√
9

(
1

100

)2

+
(

1

100

)
= 3.2%.

The error in the density is therefore dominated by the uncertainty in the
radius—ignoring the error in the mass would give a 3% error in the density
from the uncertainty in the measurement of r alone. The uncertainty in the
mass hardly contributes to the error in the density (0.2%), therefore there
is little point in measuring it more precisely. Only after the uncertainty in
the radius has been decreased by at least one order of magnitude is it worth
reconsidering the contribution from the error in the mass.

Fig. 4.8 The dependence of density on (a)
radius and (b) mass. Owing to the inverse
cubed dependence on radius the fractional
error in density is three times larger than the
fractional error in radius:

αρ
ρ = 3 αr

r . By con-
trast, the linear dependence on mass means
that the fractional uncertainties are equal:
αρ
ρ = αm

m .

Another well-known case where particular care is needed is when the func-
tion of interest is the difference in two numbers of similar magnitude. Consider
two parameters A = 18 ± 2 and B = 19 ± 2. The sum, C = A + B = 37 ± 3,
is known to a similar percentage error as either A or B. On the other hand, the
difference D = A − B = −1 ± 3 is poorly defined. Many experiments involve
looking for small differences. One should always be aware that the fractional
precision with which one can determine the difference is no longer trivially
related to the precision of the individual parameters. A much better strategy
is to find a physical parameter that is related directly to the difference. For
example, consider the transmission of light through an optically active medium
(e.g. sugar solution). One could measure the refractive index of the solution
for right-hand circular polarisation, nR, and then take a second measurement
for left circular light, nL. The degree of optical anisotropy is characterised
by the difference, nR − nL, which is generally smaller than either nR or nL.
Calculating the optical anisotropy using this method is prone to the large
percentage error problem highlighted above. A better experimental technique
is to illuminate the solution with plane polarised light. The polarisation axis
rotates as the light propagates through the medium. Measuring the rotation
angle is a direct measurement of nR − nL and is typically recorded with a
percentage error less than 1%.

Before beginning the definitive data set in an experiment identify the domi-
nant source of error and concentrate your effort in reducing it. Pay particular
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attention when the calculation involves: (i) taking the difference between two
nearly equal quantities; (ii) taking the power (>1) of a variable.

4.4.1 Experimental strategy for reducing
the dominant error

The examples in the previous section highlighted the importance of identifying
the dominant error. If one exists, there are two possible ways of reducing the
uncertainty in the dominant error. (1) Persevere with the same apparatus: the
standard deviation of the results is likely to be the same, but the uncertainty
in the standard error on the mean will decrease (slowly) as the number of
measurements is increased. (2) Find a better instrument, or method, to per-
form the experiment—this will result in the distribution of measurements
having a smaller standard deviation, and hence a smaller standard error on
the mean.

4.5 Combined experiments—the weighted mean

Suppose that there is a series of experiments, each of which measures the
same parameter. The experiments could be attempting to calculate a particular
variable in a number of different ways, or it could be the same experiment,
but performed by different people. How do we combine all these separate
measurements to yield the best value and its error? Before discussing how to
combine different results, we first give this health warning.

When taking the weighted mean of a series of measurements, it is important
that the compatibility of the results is considered: Combine multiple mea-
surements of the same quantity only if they are consistent with each other.
Consider outliers with care.

Fig. 4.9 Three circumstances which can
occur when combining a pair of measure-
ments. In (a) there is very little overlap
between the distribution of results—there is
no point trying to combine them. A better use
of time would be trying to ascertain the origin
of the discrepancy between the two sets of
measurement. In (b) the two measurements
can be combined, to yield a better estimate of
the mean with a smaller uncertainty. In (c) the
results are consistent, but there is little point
combining them as adding the less precise
measurement will hardly improve the more
precise result.

For example, if the result of an experiment to measure the speed
of light is c1 = (3.00 ± 0.01) × 108 m s−1 and another technique yields
c2 = (4.00 ± 0.02) × 108 m s−1 it is a waste of time to combine these
results as the second value is obviously the subject of systematic
errors.

Let the (consistent) results for one experiment be xi ± αi and those of
another be x j ± α j ; see the graphs in Fig. 4.9. If the two results had errors
of a similar magnitude the mean of the two readings would be the best esti-
mate of the value, as this accords equal importance to the two experimental
values:

x̄i, j = 1

2

(
xi + x j

)
. (4.28)

It can be shown that the error in the above case is:

1(
αx̄i, j

) =
√

1

(αi )
2

+ 1(
α j

)2
. (4.29)
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In the more general case the error bars are different. Then, in the absence of
any systematic error, we would naturally give more credence to the results with
the smaller error. For a range of error values we treat each measurement with
an importance, or weight, inversely proportional to the square of its standard
error—in other words, the lower the standard error the more precise the mea-
surement, and the greater its significance. One can derive an expression for this
weighted mean and its uncertainty (Bevington and Robinson 2003, Chapter 4).
The best combined estimate, xCE, incorporating all of the available data is the
sum of the weighted means, normalised by the sum of the weightings:

xCE =
∑

i wi xi∑
i wi

, (4.30)

where the weighting, wi , is given by:

wi = 1

α2
i

. (4.31)

The inverse of the square of the standard error of the weighted mean is the sum
of the weightings:

1

α2
CE

= 1

α2
i

+ 1

α2
j

+ 1

α2
k

+ · · · =
∑

i

(
1

α2
i

)
. (4.32)

4.5.1 The error in the mean—a special case of the
weighted mean

We can apply the formalism of the previous section to calculate the error in the
mean. Consider N measurements of the same quantity, xi , with i = 1, . . . , N .
We can think of each measurement as an estimate of the mean, and the best
estimate will be their weighted sum. As there is two-thirds chance that each
measurement will be within σ of the mean, we can take σ to be the error in one
of these measurements. As the error is the same for each xi , each measurement
carries the same weight, and eqn (4.30) becomes:

xCE =
∑

i wi xi∑
i wi

=
∑

i xi

N
= x . (4.33)

This gives the expected result that the combined estimate is the mean of the
measurements. In a similar manner we can calculate the standard error of the
weighted mean to be

1

α2
CE

=
∑

i

(
1

σ 2

)
= N

σ 2
. (4.34)

This analysis confirms (i) the assertion from Chapter 2 that the standard error

for N repeat measurements is α = σN−1√
N

, where we use σN−1, the sample

standard deviation, as our best estimate of the population standard deviation;
and (ii) the standard error is equivalent to the standard deviation of the mean.
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Chapter summary

• When propagating the error in a measurement of A through a nonlinear
function, Z = f (A), the uncertainty in Z is a function of both A and
its uncertainty, αA.

• For a single-variable function the error in Z for a particular measure-
ment Ā is αZ = ∣∣ f

(
Ā + αA

) − f
(

Ā
)∣∣.

• A calculus-based approximation for the uncertainty propagation for a

single-variable function is αZ =
∣∣∣∣dZ

dA

∣∣∣∣αA.

• For multi-variable functions the total error in Z is obtained by adding
the components from each variable in quadrature (provided the vari-
ables are independent).

• The calculus-based approximation for multi-variable functions is

(αZ )2 =
(

∂ Z

∂ A

)2

(αA)2 +
(

∂ Z

∂ B

)2

(αB)2 +
(

∂ Z

∂C

)2

(αC )2 + · · ·.
• A hybrid approach which combines the calculus and functional

approaches with results from a look-up table often proves to be the most
useful.

• The best combined estimate, xCE, incorporating all of the available

data is the sum of the weighted means xCE =
∑

i wi xi∑
i wi

, where the

weighting is wi = 1

α2
i

; the inverse of the square of the standard error

of the weighted mean is the sum of the weightings:
1

α2
CE

=
∑

i

(
1

α2
i

)
.

Exercises

(4.1) Propagating the error through a single-variable function
A variable is measured to be A = 9.274 ± 0.005. Calcu-
late the mean and uncertainties in Z when it is related to
A via the following relations: (i) Z = 2A, (ii) Z = A/2,

(iii) Z = A−1
A+1 , (iv) Z = A2

A−2 , (v) Z = arcsin
(

1
A

)
, (vi)

Z = √
A, (vii) Z = ln

(
1√
A

)
, (viii) Z = exp

(
A2

)
, (ix)

Z = A +
√

1
A , (x) Z = 10A.

(4.2) Propagating the error through a multi-variable function
Three variables are measured to be A = 12.3 ±
0.4, B = 5.6 ± 0.8 and C = 89.0 ± 0.2. Calcu-
late the mean and uncertainties in Z when it

is related to A, B and C via the relations: (i)
Z = A + B, (ii) Z = A − B, (iii) Z = A−B

A+B , (iv)

Z = AB
C , (v) Z = arcsin

(
B
A

)
, (vi) Z = A × B2 × C3,

(vii) Z = ln (ABC), (viii) Z = exp (ABC), (ix)

Z = A + tan
(

B
C

)
, (x) Z = 10ABC .

(4.3) Comparing methods
The relationship between the period, T , of the oscilla-
tion of a spring with a mass M attached to a spring

with spring constant K is T = 2π

√
M
K . In an experiment

T and M and their associated uncertainties are mea-
sured; show that the equation for the error in K is the
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same using (a) the look-up tables, and (b) the calculus
approximation.

(4.4) Angular dependence of the reflection coefficient of light
The intensity reflection coefficient, R, for the component
of the field parallel to the plane of incidence is

R = tan2 (θi − θt)

tan2 (θi + θt)
,

where θi and θt are the angles of incidence and transmis-
sion, respectively. Calculate R and its associated error if
θi = (45.0 ± 0.1)◦ and θt = (34.5 ± 0.2)◦.

(4.5) Snell’s law
The angle of refraction θr for a light ray in a medium
of refractive index n which is incident from vacuum at
an angle θi is obtained from Snell’s law: n sin θr = sin θi.
Calculate θr and its associated error if θi = (25.0 ± 0.1)◦
and n = 1.54 ± 0.01.

(4.6) The Lennard-Jones potential
The Lennard-Jones potential, V (r), is an effective poten-
tial that describes the interaction between two uncharged
molecules or atoms, as a function of their separation r . It
is written as

V (r) = − A

r6
+ B

r12
,

where A and B are positive constants. Experimentally it
is easy to measure the two parameters r0 and ε; here r0
is the equilibrium separation of the pair, and ε the energy
required to separate the pair from their equilibrium sepa-
ration to infinity. Obtain expressions for A and B in terms
of r0 and ε. Given that for helium ε = 0.141 × 10−21J,
and r0 = 2.87 × 10−10m, evaluate A and B. If ε can be
determined to a precision of 1%, and r0 can be deter-
mined to a precision of 0.5%, to what precision can A
and B, respectively, be determined?

(4.7) Experimental strategy
The resistance R of a cylindrical conductor is propor-
tional to its length, L , and inversely proportional to
its cross-sectional area, πr2. Which quantity should be
determined with higher precision, L or r , to optimise the
determination of R? Explain your reasoning.

(4.8) Poiseuille’s method for determining viscosity
The volume flow rate, dV

dt , of fluid flowing smoothly
through a horizontal tube of length L and radius r is
given by Poiseuille’s equation:

dV

dt
= πρghr4

8ηL
,

where η and ρ are the viscosity and density, respectively,
of the fluid, h is the head of pressure across the tube, and
g the acceleration due to gravity. In an experiment the
graph of the flow rate versus height has a slope measured
to 7%, the length is known to 0.5%, and the radius to
8%. What is the fractional precision to which the vis-
cosity is known? If more experimental time is available,
should this be devoted to (i) collecting more flow-rate
data, (ii) mesuring the length, or (iii) the radius of the
tube?

(4.9) Error spreadsheet for van der Waals calculation
Construct a spreadsheet which has the data from the
calculation in Section 4.2.2. Include cells for: (i) the
variables (molar volume and the absolute temperature),
(ii) the uncertainties, and (iii) the universal gas constant
as well as the parameters a and b. Verify the num-
bers obtained in the worked example. Repeat the calcu-
lation for (i) Vm = (2.000 ± 0.003) × 10−3 m3 mol−1

and T = 400.0 ± 0.2 K; (ii) Vm = (5.000 ± 0.001) ×
10−4 m3 mol−1 and T = 500.0 ± 0.2 K. Repeat the
calculations with the same variables for (a) He with
a = 3.457 209 × 10−3 m6 mol−2 Pa, and b = 2.37 ×
10−5 m3 mol−1; (b) CO2 with a = 3.639 594 ×
10−1 m6 mol−2 Pa, and b = 4.267 × 10−5 m3 mol−1;
and (c) Ar with a = 1.362 821 25 × 10−1 m6 mol−2 Pa,
and b = 3.219 × 10−5 m3 mol−1.

(4.10) Weighted mean
A group of six students make the following mea-
surements of the speed of light (all ×108 m s−1):
3.03 ± 0.04, 2.99 ± 0.03, 2.99 ± 0.02, 3.00 ± 0.05,
3.05 ± 0.04 and 2.97 ± 0.02. What should the cohort
report as their combined result? If another stu-
dent then reports c = (3.0 ± 0.3) × 108 m s−1, is
there any change to the cohort’s combined measure-
ment? If a further student reports c = (4.01 ± 0.01) ×
108 m s−1, is there any change to the cohort’s combined
measurement?
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The graphical representation of data is the most efficient method of report-
ing experimental measurements in the physical sciences. Graphs are a very
effective visual aid, and we make use of them to (i) highlight trends in, and
relationships among, experimental data, (ii) test theories, (iii) enable compar-
isons between data sets to be made, (iv) look for evidence of systematic errors
and (v) extract additional parameters which characterise the data set. We treat
each of these concepts in this chapter, and also emphasise the role graphs can
play with regard to helping to minimise errors.1

1Note that we assume here that a suitable
computer package is being used to generate
graphs, although most of the advice will also
be relevant for hand-drawn graphs.

5.1 Producing a good graph

The overriding considerations when producing a good graph are simplicity and
clarity. To this end there are several conventions that are usually followed. A
set of guidelines to follow is provided here, together with a fuller discussion of
some of the points raised.

Guidelines for plotting data

(1) Plot the independent variable on the horizontal axis, and the dependent
variable on the vertical axis.

(2) Consider linearising the data to generate a straight-line plot.
(3) Use appropriate scales for the axes such that most of the area of the

graph is utilised.
(4) Label each axis with the name and units of the variable being plotted.
(5) Add data points and error bars, ensuring that they are clear, with

different data sets being distinguishable.
(6) Add a fit or trend line—either a straight line, a smooth curve to capture

the trend of the data set, or a suitable theoretical model.
(7) Add an informative title to lab-book graphs, write a caption for figures

for publication.

A good graph enables the reader to absorb quickly the key points of the data.
As such it needs to be simple, clear and contain all pertinent information. We
distinguish between two instances where graphs are used extensively. Gener-
ating a lab-book graph by plotting the experimental data in your lab book as
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you progress is excellent laboratory practice. The dissemination of the results
of an experiment are published either in a report or a scientific paper. The
graphs which appear as figures in these documents are presented in a slightly
different format from the lab-book graphs and we also include guidelines to
produce graphs for publication.

5.1.1 The independent and dependent variables

It is a convention that the data are plotted with the independent variable (the
parameter that the experimenter is varying) on the horizontal, or x , axis and the
dependent variable (the parameter that is measured) on the vertical, or y, axis.
The x-coordinate is also called the abscissa, and the y-coordinate referred to
as the ordinate.

5.1.2 Linearising the data

For clarity of the graphical representation of data one should always attempt to
show a linear relationship between the dependent and independent variables.
This is because it is much easier to (i) see deviations from a straight line,
(ii) fit linear relations and express the relationship between the experimental
quantities and those predicted by theory. In particular there exist analytic
expressions for the slope and intercept and their uncertainties for a straight-line
fit. For example, it is known that the period, T , of a simple pendulum depends

on the length L via the relation T = 2π
√

L
g , where g is the acceleration due to

gravity. Typically one sets the length of the pendulum (the independent vari-
able) and makes multiple measurements of the period (the dependent variable)
to give T ± αT . Thus by plotting T 2 on the y-axis versus L on the x-axis we
should get a straight line through the origin, and can extract a value for g and
its error from the slope. Note that the conventional terminology is to call this
is ‘a graph of T 2 against L’.

5.1.3 Appropriate scales for the axes

It is important that the range of each axis is independently adjusted such
that the data set is fully encapsulated without large areas of the graph being
empty. The default settings in most graphical packages try to achieve this goal;
however to produce a clear graph the scales may need to be optimised further.
A common problem is in defining the minimum value of the axis range—think
carefully whether an axis should start at 0. It is possible to include a smaller
figure as an inset to a larger graph if there is plenty of white space available—
this is an efficient way to convey more information in the same space (a vital
consideration when preparing figures for publication in prestigious journals, or
laboratory reports for assessment when there is a strict page limit).

Table 5.1 Prefixes used in the SI
system. Note that the symbols for
factors which are smaller than 1 are
all lower case, and that the symbols
for factors greater than or equal to
a million are all upper case.

Factor Prefix Symbol

10−24 yocto y
10−21 zepto z
10−18 atto a
10−15 femto f
10−12 pico p
10−9 nano n
10−6 micro μ

10−3 milli m
10−2 centi c
10−1 deci d
101 deca da
102 hecto h
103 kilo k
106 mega M
109 giga G
1012 tera T
1015 peta P
1018 exa E
1021 zetta Z
1024 yotta Y

5.1.4 Labelling the axes

Each axis must be labelled with the variable being plotted (either the name, or
the accepted symbol) and units. There are two extensively used conventions
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as to how units are included: one can either (i) write the unit in parentheses
after the variable, e.g. displacement (m); or (ii) the unit can be separated from
the quantity with a solidus (/), e.g. displacement/m. Use SI units wherever
possible. When plotting data the use of arbitrary units should be avoided as
much as possible; if this is impossible the correct terminology to label the
axis is (arbitrary unit) not (a.u.) as this can be confused with, for example,
astronomical unit or atomic unit. To improve the clarity of a graph, use of
exponential notation or numbers containing many decimal places should be
avoided. This can be achieved by using appropriate multipliers and prefixes.
The standard factors range from 10−24 to 1024 and are listed in Table 5.1; for
example 0.000 005 A and 5E − 6 A both become 5 μA. Fig. 5.1 Combining many different data sets

on one graph. The forward-bias current–
voltage characteristics of a silicon (◦),
germanium (�) and zener (�) diode are
depicted. A logarithmic scale was chosen
for the current to emphasise the exponential
growth of the current with increasing voltage.

Many different data sets can be plotted simultaneously on one graph in order
to establish trends among different parameters, see Fig. 5.1 for an example
of current–voltage characteristics for three different semiconductor diodes.
When plotting multiple data sets on a single graph different and distinguishable
symbols should be used for distinct sets. An explanation of which symbol
represents which data set can either be added as an inset to the graph, or
explained clearly in the caption as is demonstrated in the caption of Fig. 5.1
(some journals will specify a preference). The information from the caption
of Fig. 5.1 could also be conveyed by the sentence ‘the open squares are for
germanium, the open circles for silicon, and the solid stars for the zener diode’.

5.1.5 Adding data points and error bars to graphs

Experimental data are plotted as discrete points using a common symbol for
a single data set. Most graphical plotting packages have built-in symbols that
are distinct, scalable and easily distinguishable. The symbol size should be
adjusted for maximum clarity. When the number of data points is large, such
as occurs with computer-recorded spectra, it may be more appropriate to plot
the data as continuous lines without a symbol as even the smallest symbols
would overlap and obscure the underlying trend. If plotting several of these
data sets on a single graph it may be useful to plot a subset of the points on the
curves to differentiate between the different data sets and enhance the clarity
of the figure. As in Fig. 5.1 a common and unique symbol should be used
for each different data set. For lab-book graphs it is important that a legend
detailing the different data sets plotted is included within the area of the graph;
publication graphs would have this information either within the area of the
graph, or in a detailed caption under the figure.

Fig. 5.2 Error bars are added to points on a
graph to indicate the 68% confidence lim-
its. The Gaussian distributions shown in (a)
represent the probability distribution function
for the mean value, and we expect 68% of
the points to be within one standard error of
the mean of this value. In (b) we represent
the same information as in (a), but plot error
bars with a magnitude of one standard devia-
tion of the distributions shown in (a).

The coordinates of a data point on a graph are our best estimate (i.e. the
mean) of the independent and dependent variables. There is an uncertainty
associated with these mean values and a graph needs to reflect this. In Chap-
ter 2 we showed how the standard error of the mean, α, is calculated for single
variables, and in Chapter 4 how these could be propagated through various
functions. We represent the final error in both the abscissa and ordinate as an
error bar which is the two-thirds confidence limit that the measured value,
Z , lies within the range

(
Z − α−

Z

)
to

(
Z + α+

Z

)
, as shown in Fig. 5.2. To

produce a straight-line graph, we often process the data. In this case, although
the uncertainty in the original measurements might be equal and symmetric,
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by propagating through a nonlinear function the uncertainties vary from point
to point and may also be asymmetric. In general, the fractional errors on the
dependent variable should be larger than those of the independent variable—
the analysis in subsequent chapters assumes that this is the case. A discussion
of how to proceed when both variables contain errors is given in Chapter 9.
If the error bars are not larger on the vertical axis than those on the horizontal
axis consider revising the experimental strategy.

Fig. 5.3 The number of atoms (in millions)
and the lifetime of the atoms in a magneto-
optical trap are displayed as a function of
the dispenser current. By plotting both depen-
dent variables simultaneously the trade-off
between a high number of atoms and long
lifetime is evident. The smooth curve is a
guide to the eye.

Horizontal and vertical error bars should be plotted as long as they do not
obscure the clarity of the graph. A common issue is when the size of the symbol
used to plot the data is larger than the size of the error bar. In this case, consider
reducing the size of the symbol within the constraint of graph clarity. If the
measurements are precise the error bars may be too small to be seen, as occurs
in Fig. 5.10 below. This should be noted in the figure caption on published
graphs and included as an annotation in lab-book graphs. If the trend in the
data is clear as there are many data points, it may reduce the clarity of the
graph to add every error bar. Representative error bars can be added to a small
subset of the data in this case.

Plotting error bars

The uncertainty in a quantity is represented graphically using error bars. The
error bars are drawn between

(
Z − α−

Z

)
and

(
Z + α+

Z

)
, where αZ is the

standard error. For Poisson statistics with N counts the error bar is drawn
between

(
N − √

N
)

and
(

N + √
N
)

.

Fig. 5.4 The intensity of X-rays transmitted
as a function of the slit width.

There are circumstances in which two dependent variables are measured
for each value of the independent variable. In such a situation it is possible
to draw a graph with two y-axes, provided a sufficient level of clarity is
maintained. Figure 5.3 shows an example of data obtained for the number and
lifetime of cold atoms in a trap as a function of the current passed through the
atom dispenser. It is crucial to indicate clearly which data set is associated
with which axis. A smooth curve can be added to emphasise the trend in
the data where there is no particular theoretical model, with an explanation
in the caption that the curve is a guide to the eye.

5.1.6 Adding a fit or trend line

There are three types of fit, or trend line, which we can add to a graph. (1)
If a visual inspection of the graph confirms a linear dependence, we add a
linear trend line. This topic is discussed in detail in Section 5.2.1. (2) There
are occasions when the theoretical model cannot be linearised. For such a case
the appropriate nonlinear function can be added to the graph. The relevant
parameters are initially chosen, by eye, to capture the trend of the data. There
will be an extensive discussion in Chapters 6 and 7 of how to optimise the
parameters and evaluate their uncertainties. (3) In circumstances where there
is no theoretical prediction of the relationship between the dependent and
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independent variable one can add a smooth curve to guide the eye. The caption
should clearly state that the smooth curve is a guide to the eye, and not a
theoretical prediction.

5.1.7 Adding a title or caption

For a lab-book graph an informative title should be included. Graphs for a
publication would have this information in a detailed caption under the figure.
Graphs in this book have captions, not titles. To improve clarity, the use of
shading, coloured backgrounds and grid lines should be avoided.

Fig. 5.5 The number of atoms in a trap as a
function of time. In (a) the number is plot-
ted against time, in (b) a logarithmic scale
is chosen for the y-axis, and in (c) the nat-
ural logarithm of the atom numbers is plot-
ted against time for every third point shown
in (a) and (b).

5.2 Using a graph to see trends in the data

It is far easier to see trends in a data set from a graph rather than the raw
data—this is why it is important to plot graphs as data are being collected.
Consider the data shown in Fig. 5.4 which shows the intensity of X-rays
transmitted as a function of the slit width. The graph allows us to deduce
that (a) for widths smaller than approximately 0.25 mm an increase in slit
width has a concomitant increase in transmitted X-ray intensity: (b) for widths
greater than approximately 0.25 mm the X-ray intensity is largely independent
of width. Both of these statements can be put on a more quantitative footing
later, but the graphical representation of the data allows us to draw preliminary
conclusions rapidly.

In Fig. 5.5(a) the number of laser-cooled Cs atoms in a magneto-optic trap
is plotted as a function of time, showing a monotonic decrease. Theoretical
considerations lead us to believe that the dependence might be an exponential
decay, which motivated plotting the natural logarithm of the atom number, as
shown in parts (b) (using a logarithmic scale) and in part (c) by evaluating
the logarithm of the dependent variable. For the logarithmic plots we see that
there are two different straight lines: the first is associated with a time constant
of τ = 8.67 ± 0.04 s, and the second with a time constant of τ = 67 ± 4 s.
Further theoretical analysis leads us to believe that the former is associated
with light-assisted collisions, and the latter with collisions with background gas
molecules. Most of this information was gleaned rapidly through plotting the
appropriate graph. It is possible to extract values for the two decay constants
and their uncertainties from the straight-line fits to such a trace; it is also
possible by repeating the experiment many times to obtain many readings of
the time constants, and the results of Section 4.5 can be used to combine these
independent measurements.

5.2.1 Adding a linear trend line

Experiments are often designed such that the dependent variable exhibits a
linear dependence on the independent variable. There are simple analytic
results for calculating the best-fit straight line for a data set with constant error
bars on the vertical axis (we will discuss in more detail in the next section,
and extensively in later chapters, what exactly we mean by ‘best fit’). Most
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graphical packages and spreadsheets allow you to add a linear trend line, which
is the calculated best-fit straight line to the data.2

2We assume that a computer plotting package
is being used to add the trend line, therefore
we will not give advice about using a clear
plastic ruler, using a sharp pencil, etc. which
is relevant for a hand-drawn graph.

As was discussed in Section 5.1.5 the error bars on the y-axis of a graph
represent the 68% confidence limit for the value of the ordinate. If we assume
that the best-fit straight line is a good description of the data, we would
therefore expect that the line intersects two-thirds of the measurements within
their error bar.

For a good fit we expect two-thirds of the data points to be within one
standard error bar of the trend line.

There are two obvious reasons why the fraction of points which are con-
sistent with the line of best fit may be significantly different from this: (i) the
error bars have been overestimated; and (ii) the assumed linearity of the best
fit is not valid. A thorough discussion of whether a model (be it a linear fit or
otherwise) describes a data set is reserved until Chapter 8.

If approximately two-thirds of the data points intersect the linear trend line,
the data are well modelled by a straight line y = mx + c, and it is appropriate
to extract four important parameters—these are the gradient, m, and intercept,
c, and their associated errors.3 Using a process known as the method of least

3In Chapter 7 we will argue that the correla-
tion coefficient should also be reported for a
straight-line fit.

squares (to be discussed in the next section) one can derive analytic expres-
sions for the gradient and its uncertainty and the intercept and its uncertainty
(Taylor 1997, pp. 182–8, or Barford 1985, Section 3.3). The results are:

c =
∑

i x2
i

∑
i yi − ∑

i xi
∑

i xi yi

�
, (5.1)

and

m = N
∑

i xi yi − ∑
i xi

∑
i yi

�
, (5.2)

with the error in the intercept,

αc = αCU

√∑
i x2

i

�
, (5.3)

and the error in the gradient,

αm = αCU

√
N

�
, (5.4)

where4

4With a carefully constructed spreadsheet
the terms

∑
i xi ,

∑
i x2

i ,
∑

i yi ,
∑

i xi yi ,

and
∑

i (yi − mxi − c)2 for the evaluation
of eqns (5.1)–(5.6) are easily determined.
Note also that many spreadsheets and soft-
ware packages have in-built functions which
perform these summations.

� = N
∑

i

x2
i −

(∑
i

xi

)2

, (5.5)

and the so-called common uncertainty αCU is defined as

αCU =
√

1

N − 2

∑
i

(yi − mxi − c)2. (5.6)
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The common uncertainty will be discussed in greater detail in Chapter 8—
essentially it represents an approximation to the magnitude of the uncertainty
in the y measurements, assumed to be common to all data points, assuming
that the straight line is the appropriate theoretical model to describe the data.

Note that the gradient and intercept are parameters and should be quoted
using the five golden rules introduced at the end of Chapter 2. Note also
that quoting the slope and intercept is an example of data reduction. In the
same way that we introduced three numbers (the mean, standard deviation and
standard error) to summarise the information contained within N data points,
the four numbers (slope, intercept and their uncertainties) are an attempt to
summarise the information from N data pairs.

5.2.2 Interpolating, extrapolating and aliasing

By adding a trend line to a discrete data set we have some confidence in an
underlying model. However, we must be very careful in over-interpreting the
data, as, at a fundamental level, all we have are our pairs of discrete measure-
ments of the dependent and independent variables, and their uncertainties.

Fig. 5.6 Five tabulated values of the viscos-
ity of an aqueous glycerol solution as a func-
tion of the percentage of glycerine are plotted
(solid dots). It is reasonable to expect the
viscosity to vary smoothly as a function of
the percentage of glycerine; thus one can
interpolate to estimate the viscosity at val-
ues other than the tabulated ones. The open
circles show the results of a linear interpola-
tion between successive points for 5, 15 and
25% glycerine. A higher-order polynomial fit
could also be used if required.

The process of using the straight line (or any other smooth-curve fit to a data
set) to infer a value of the dependent variable for a value of the independent
variable between two measured values is called interpolating and is shown in
Fig. 5.6. The process of predicting a value for the dependent variable when the
independent variable is outside the measured range is called extrapolating;
both processes should be used with caution. There are many examples of
physical phenomena where the linear dependence exhibited for small values of
the independent variable breaks down at higher values: for example, a spring
shows a linear extension as a function of the applied force only up to the elastic
limit; the number of atoms or molecules in an excited state increases linearly
with laser intensity initially, but saturates at higher intensities.

If the values chosen for the independent variable are periodic it is pos-
sible to suffer from the problem of aliasing. For example, if voltages
in an a.c. electrical circuit are sampled at times t = 0, 1, 2, . . . seconds,
the three waveforms V1 (t) = 5 volts, V2 (t) = 5 cos (2π × t) volts, and
V3 (t) = 5 cos (2π × 3t) volts will all give identical results; the time-
dependent functions are said to alias the constant. If measurements of temper-
ature which are evenly spaced in time give the results 21.1◦C, 21.1◦C, 21.2◦C,
21.3◦C and 21.4◦C, what temperature might we expect half-way between the
last two measurements? We could fit a straight line, or a higher order polyno-
mial, to aid with the interpolation. However, if we learn that the measurements
were of the temperature in a particular city at midday, the measurements will
be useless for predicting the temperature at midnight.

5.3 Introduction to the method of least squares
and maximum likelihood

Most straight-line graphs we draw have a large number of data pairs, and we
wish to learn about the slope and intercept. The situation under consideration
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is one that mathematicians call overdetermined, i.e. we have more equations
than unknowns. To extract two parameters (slope and gradient) is obviously
impossible with one data point; we could solve for both m and c (with no
uncertainty) if we had two exact pairs of data (x1, y1) and (x2, y2). The situa-
tion we face is very different: we typically have far more than two data points,
but the experimental values are subject to random statistical fluctuations. We
therefore perform what is known as regression analysis, where the goal is
to determine the optimal values of parameters for a function (a straight line
in the present case) that lead to the function having the best fit to the set of
experimental data.

Fig. 5.7 The residual of a data point is
defined as the measured value, yi , minus
the theoretical y-value for that x-value. In
the method of least squares the sum of the
squares of the residuals is minimised by
changing the value of the slope and intercept
of the fitted line.

The best-fit straight line is defined as the line which is in closest proximity
to as many of the data points as possible. If the coordinates of the i th data
point are (xi , yi ) and the line of best fit is of the form y = mx + c, then
the y-coordinate of the best-fit line at xi is y = mxi + c. If we have selected
appropriate values of m and c, then the difference (yi − y) will be small—
this difference between the experimentally measured value of the dependent
variable and the theoretical prediction is called the residual. The definition
of the residual is shown schematically in Fig. 5.7. We cannot simply obtain
the best-fit line by minimising the difference, (yi − y), for all data points as
sometimes the residual will be negative, and sometimes positive (Fig. 5.7).
Instead, we must consider a quantity which is always positive. One approach
is to minimise the modulus of the difference, |yi − y|; an alternative, and
widespread, approach is to minimise the square of the difference, (yi − y)2,
which is also always positive. In the method of least squares one seeks to
minimise the sum of the squares of the residuals. By definition, therefore, the
best values of m and c will be those in which the squares of the differences
summed for all data points is minimised. The method of least squares can
be derived from the formalism of maximum likelihood in conjunction with
the central limit theorem (see Section 3.5), which motivates the statement that
each data point that we measure, yi , is drawn from a Gaussian distribution
with a width given by the standard error, αi . The link between the Gaussian
distribution and the error bar was highlighted in Fig. 5.2.

The y-coordinate of the line of best fit at xi , y (xi ), is the most probable
value of the mean of the parent distribution. We can use the parent distribution
to calculate the probability of obtaining the value yi , given the parameters m
and c, which is proportional to the value of the probability density function at
yi . The assumption that we make is that the parent distribution is described by
the Gaussian probability density function given in Section 3.2, eqn (3.7):

Pi = Gi dyi = 1√
2παi

exp

[
− (yi − mxi − c)2

2α2
i

]
dyi . (5.7)

The total probability that we obtain our observed set of N measurements
given m and c is the product of the probabilities for each individual
measurement:

P (m, c) =
∏

i

Pi =
∏

i

dyi√
2παi

exp

[
−1

2

∑
i

(
yi − mxi − c

αi

)2
]

. (5.8)



5.4 Performing a least-squares fit to a straight line 61

In eqn (5.8) we think of the values of yi , αi and xi as being fixed once the
experiment is complete, and of m and c as variables whose values can be cho-
sen to maximise the probability, P (m, c)—which occurs when the line of best
fit is as close as possible to the data points. The analytic solutions to the line
of best fit presented in eqns (5.1)–(5.6) were found by differentiating P (m, c)
with respect to m and c and setting the result to zero, for the special case of
all the uncertainties αi being equal. In eqn (5.8) the pre-factor is independent
of m and c and the probability is maximised when the summation term in the
argument of the exponent is minimised. The probability is maximised when
the goodness-of-fit parameter, χ2, is minimised. We have defined χ2 as:

χ2 =
(

yi − y (xi )

αi

)2

. (5.9)

When the error bars, αi , are constant they do not influence the values
of the best-fit intercept, gradient or their associated errors. We shall see
in Chapter 6 that, in general, to find the line of best fit we vary the
parameters m and c to minimise the weighted sum of the square of the
deviations, χ2.

5.3.1 Example using the method of least squares

Fig. 5.8 The evolution of the goodness-of-
fit parameter with the gradient, m. The open
points in (b) correspond to the lines shown
in (a).

As a simple example, consider the case shown in Fig. 5.8. The data points
obviously show a linear trend through the origin. In this, rather contrived,
example we know that y = mx . But how do we arrive at the best value for
m? One method is to try many different values of m until we see that the
hypothesised model goes through our data points (Fig. 5.8a). By such a method
it becomes obvious that the best line is y = 2x .

Alternatively, we can arrive at the same result by minimising the sum of
the squares of the residuals,

∑
i (yi − y)2. The best-fit line will be the one

with the value of m for which the sum of the squares of the residuals is a
minimum. By inspection of the plot of

∑
i (yi − y)2 against m (Fig. 5.8b) we

see the well-defined minimum (in this case zero) corresponding to the best fit
with m = 2. Obviously, with genuine experimental data, the minimum value
of

∑
i (yi − y)2 will never be zero for two reasons: (i) the inevitable statistical

fluctuations associated with the data, and (ii) the hypothesised model (a straight
line in this case) might not be an appropriate description of the data over the
entire range.

5.4 Performing a least-squares fit
to a straight line

There are three methods for obtaining the best-fit straight line parameters
for a given a data set. Firstly, the analytic functions of eqns (5.1)–(5.6)
can be used to determine both the value and uncertainty of the slope and
intercept. The terms to be evaluated within these equations are commonly
found on scientific calculators and spreadsheet analysis packages. Secondly,
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Fig. 5.10 Data from three experiments used to determine the value of a resistor. Error bars too small to be seen. In (a) a correctly calibrated
voltmeter and ammeter were used giving a fitted gradient of 200 ± 2 k	 and an intercept, consistent with Ohm’s law, of 0.0 ± 0.1 V. In (b) the
data are recorded with an ammeter with a zero error. The gradient remains the same as (a), but the intercept is −0.26 ± 0.06 V. In (c) the voltmeter
has a calibration error—again the gradient remains the same as in (a) with an intercept of 10.09 ± 0.09 mV. In both (b) and (c) the intercept is not
consistent with Ohm’s law and indicates a systematic error. Note the axes scales have been set to be the same for these three graphs to highlight the
differences between the curves.

any computer fitting/plotting software will have the ability to conduct a least-
squares regression. Finally, one could construct the appropriate terms within
a spreadsheet and use the in-built minimisation routine. The last method
may be over-elaborate for this situation; however it is easily generalised
to far more complex fitting and analysis, and is used extensively later in
the book.

Fig. 5.9 The least-squares best-fit straight
line to a sinusoidal variation. Error bars
smaller than symbol size. Health warning It
is possible to use the method of least squares
to find the ‘best-fit’ straight line for any data
set. This does not mean that a linear fit is an
appropriate theoretical model.

The method of least squares will always fit a straight line to a data set, but
does not answer another interesting question, namely ‘are the data consistent
with a straight line?’. One could ‘fit’ a straight line to a data set which exhibits
sinusoidal variation, as seen in Fig. 5.9, with obvious ridiculous consequences
if one takes the ‘best-fit’ parameters seriously. We postpone until Chapter 8 the
mathematically rigorous techniques for giving a quantitative measure for the
quality of a fit, but note that, in Fig. 5.9, 68% of the data points do not coincide
with the line of best fit and there would be little point in continuing with an
analysis based on the least-squares best-fit straight line.

5.5 Using graphs to estimate random
and systematic errors

A single pair of measurements of current and voltage through a resistor
allows us to calculate an experimental value of the resistance and its error.
This assumes that Ohm’s law is valid for the particular current and voltage
parameters used. For example, for a voltage of 6.0 ± 0.1 V and a current of
30.0 ± 0.1 μA, we deduce a resistance, R, of 200 ± 3 k	. A better experimen-
tal strategy is to take a series of measurements for different current–voltage
pairs, and plot a graph, as shown in Fig. 5.10(a). Any departure from the linear
trend is visually immediately apparent. The best estimate of the resistance
is the gradient of the graph, which we can extract by fitting a least-squares
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straight line. By collecting more data the statistical error in the resistance will
be reduced.

Imagine the meter we use to measure the current has a systematic error,
and each of the current values is systematically too high by 2μA. The single-
point measurement of 6.0 ± 0.1 V and a current of 32.0 ± 0.1 μA, yields a
resistance of 188 ± 3 k	, which is incorrect. However, by plotting the graph
the fact that all of the data points are systematically displaced will have
no bearing on the slope of the graph, and hence our determination of the
resistance; see Fig. 5.10(b). Similarly, a systematic offset on all of the voltage
readings will give an incorrect single-point measurement, but the slope of the
graph will be correct, as in Fig. 5.10(c). Thus a whole class of systematic
errors can be negated by plotting a graph. In both of these cases, the inter-
cepts are not consistent with zero—a sign of the presence of a systematic
error.

5.6 Residuals

The best-fit line in Fig. 5.9 is clearly not a good description of the data. Here
we introduce the idea of performing a preliminary test of the quality of the fit
from the best-fit straight line. Based on the ideas discussed in Section 5.3 and
Chapter 3 we would only expect two-thirds of the data points to lie on the best-
fit line, within their error bars. Therefore a quick visual inspection of a line of
best fit to a graph should be performed; approximately two-thirds of the data
points should be consistent with the line, and approximately half of the other
points should lie above the line, approximately half below.

It is very useful to plot the residuals Ri = yi − y (xi ). If the data are consis-
tent with a straight line, the residuals should have a mean of zero and show no
obvious structure. If there are many data points, a histogram of the residuals
can be plotted. One would expect to see a Gaussian distribution centred on
zero. The power of plotting the residuals is evident in the two graphs of
Fig. 5.11. A quick visual inspection in both cases indicates that a linear model

Fig. 5.11 Data sets with a linear fit. The error
bars are too small to be seen. In both cases, a
quick visual inspection suggests a good fit.
However, a plot of the residuals shows struc-
ture. In (a) we clearly see that a quadratic
terms needs to be incorporated into the model
of our data and in (b) a sinusoidal variation
should be included.
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seems a good fit; however, in both cases, the residuals clearly indicate that
higher order terms have to be included in the model.

Chapter summary

• The overriding considerations when producing a good graph are sim-
plicity and clarity.

• The error bar on a point on a graph is the two-thirds confidence
limit.

• The error bar is drawn between
(
Z − α−

Z

)
and

(
Z + α+

Z

)
, where α is

the standard error (standard deviation of the mean).
• For Poisson statistics with N counts the error bar is drawn between(

N − √
N
)

and
(

N + √
N
)

.

• The method of least squares can be used to deduce the best-fit para-
meters for linear regression y = mx + c where the data have constant
error bars.

• The best estimate of the intercept and slope are

c =
∑

i x2
i

∑
i yi − ∑

i xi
∑

i xi yi

�
, and

m = N
∑

i xi yi − ∑
i xi

∑
i yi

�
,

where � = N
∑

i x2
i − (∑

i xi
)2.

• The best estimate of the error in the intercept and slope are

αc = αCU

√∑
i x2

i

�
, and αm = αCU

√
N

�
,

where αCU =
√

1

N − 2

∑
i (yi − mxi − c)2.

• Having plotted a straight-line graph the residuals should be analysed—
two-thirds of the data points should be consistent with the line within
their error bars.

Exercises

(5.1) Geometry of the best-fit straight line
Show, using eqns (5.1) and (5.2), that the line of best fit
goes through the point (x, y).

(5.2) Linearising functions for plotting
How can the following functions be linearised, suitable
for a straight-line plot? Explain what transformation is

needed for the functions to get them to be of the form
y = mx + c. What would the slope and intercept of the
line be? Take U to be the independent variable, and V
the dependent variable.

(i) V = aU2,

(ii) V = a
√

U ,
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(iii) V = a exp (−bU ),

(iv) 1
U + 1

V = 1
a .

(5.3) Best-fit straight line—an unweighted fit
The data listed below come from an experiment to verify
Ohm’s law. The voltage across a resistor (the dependent
variable) was measured as a function of the current flow-
ing (the independent variable). The precision of the volt-
meter was 0.01 mV, and the uncertainty in the current
was negligible.

Current (μA) 10 20 30 40 50
Voltage (mV) 0.98 1.98 2.98 3.97 4.95

Current (μA) 60 70 80 90
Voltage (mV) 5.95 6.93 7.93 8.91

(i) Use the results of Section 5.2.1 to calculate the
unweighted best-fit gradient and intercept, and their
uncertainties. (ii) Calculate the common uncertainty,
αCU, and compare the value with the experimental uncer-
tainty. (iii) Plot a graph of the data and add the best-fit
straight line. (iv) Calculate the residuals, and comment
on their magnitudes.
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Often the data we wish to plot either have error bars which are not uniform,
or the data are described by a function which is not a simple straight line. In
both cases, the graphical representation of the data remains the most efficient
method of highlighting trends, testing our theories and enabling comparisons
between data sets to be made. However, if one wishes to fit the data, we need
to extend our strategies beyond those discussed in the previous chapter.

6.1 The importance of χ2 in least-squares fitting

The dimensionless quantity χ2 defined in Chapter 5 as a goodness-of-fit para-
meter,

χ2 =
∑

i

(yi − y (xi ))
2

α2
i

, (6.1)

is also valid for non-uniform error bars. In Chapter 5 we treated the special
case of the error bars, αi , all being equal and the function y (xi ) being the
straight line y (xi ) = m xi + c. In this chapter we will relax these constraints,
and consider the more general case. First, we will discuss the situation where
the errors are no longer uniform and in the later part of the chapter we will
consider in detail examples of fits to more complex functions. In all cases,
the best-fit parameters remain those for which χ2 is minimised. Note that,
being a function of the random variables yi , χ2 is in turn a random vari-
able with a probability distribution function and we return to this concept in
Chapter 8.

There are three methods for obtaining the best-fit parameters to a given
data set. Firstly, for some simple theoretical models (such as a straight line
or low-order polynomials) analytic functions can be used to determine the
value of the best-fit parameters such as slope and intercept. However, the
two disadvantages of this method are that (i) there are no easily accessible
closed-form expressions to calculate the uncertainties in the parameters, and
(ii) it is impossible to generalise the analytic results to an arbitrary function.
Secondly, most computer-based fitting/plotting software will have the ability
to conduct a weighted least-squares regression which will give the best-fit
parameters and their associated uncertainties. Finally, one could perform the
appropriate analysis in a spreadsheet and use the in-built routine to minimise
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χ2. For all three cases, the final minimised value of χ2, χ2
min, can then be used

to determine the quality of the fit.
There are three related questions when considering the ‘best fit’: (i) are

my data consistent with the proposed model at a particular confidence level?
Assuming the model is valid, (ii) what are the best-fit parameters of the model?
and finally (iii) what are the uncertainties in these best-fit parameters? The
first question is often the hardest to answer, and we return to it in Chapter 8.
Throughout this chapter we implicitly assume that the uncertainties in our data
set are Gaussian and that the proposed theoretical model is a valid description
of the data. We use the phrase ‘good fit’ for the case where there is agreement
between our data and the proposed theoretical model.

6.1.1 χ2 for data with Poisson errors

When the sample distribution is a discrete function, i.e. where the experiment
involves counting, we have seen that the distribution of the measurements is
given by the Poisson probability distribution function with a mean count Oi

and associated uncertainty αi = √
Oi (Section 3.4). Here Oi is the observed

number of counts for the i th interval.
From the definition of χ2 one may think that for Poisson statistics we

should substitute αi = √
Oi into eqn (6.1). However the appropriate formula

for χ2 for Poisson statistics (see Squires 2001, Appendix E, or Taylor 1997,
Chapter 12) is:

χ2 =
∑

i

(Oi − Ei )
2

Ei
, (6.2)

where Ei is the expected number of counts in the same interval. To ensure that
the χ2 calculation is not skewed by any asymmetry in the Poisson probability
distribution function for low means, it is important that the data are re-binned
such that within each re-binned interval the sum of the expected counts is not
too low; the threshold is usually set as five. Note that if we have a good fit, then
by definition, αi = √

Ei ≈ √
Oi .

Equation (6.2) should only be used for Poisson counts, as it is a special case
of eqn (6.1). Applying eqn (6.2) to any other situation leads to nonsensical
results because χ2 will no longer be dimensionless.

6.2 Non-uniform error bars

A sequence of data points with non-uniform error bars is referred to as het-
eroscedastic. There are many reasons why the data we obtain and wish to plot
may have error bars which are not uniform; these may include:

• The uncertainty in a variable may be intrinsically non-uniform; this
occurs with, for example, a Poisson distribution of counts in radioactive
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decay, where the errors decrease as the count rate decreases (although the
fractional error increases).

• Different numbers of repeat measurements have been taken for each
value of the independent variable.

• Measuring devices may have similar percentage precision for different
scale settings. The magnitude of the error bar will then depend on the
scale selected. (Multimeters are a common example of this—the preci-
sion of the instrument could be 0.1 μA on the 200 μA scale but 0.1 mA
on the 200 mA scale.)

• The process of linearising the data through a nonlinear function will
result in non-uniform error bars for the processed data even when the
uncertainty in the raw data is uniform.

Fig. 6.1 Four examples of heteroscedastic
data sets well-described by a straight line.
In (a) there is a constant percentage error,
in (b) Poisson counts of a radioactive decay
have non-uniform error bars. In (c) the large
error bar in phase near π/2 is highlighted
when using the Lissajous method is high-
lighted, whereas (d) illustrates the degra-
dation of the signal-to-noise ratio from a
frequency-to-voltage converter near harmon-
ics of the mains frequency.

Figure 6.1 shows four examples of heteroscedastic data sets. In part (a) we
see a data set where the percentage error of the ordinate grows approximately
linearly with the value of the abscissa. Part (b) displays the natural logarithm
of the count rate as a function of time for a background-corrected radioactive
decay. There are two factors which lead to the non-uniform error bars here:
(i) the inherent nonlinearity of the error in Poisson counts, and (ii) the non-
linearity introduced by propagating the error through the logarithm. A data
set to measure the speed of light by measuring a phase shift as a function
of separation between source and detector is shown in Fig. 6.1(c). As we
discussed in Chapter 4, there is an inherent nonlinearity in the error in the
phase deduced from the Lissajous method; note that the error is relatively
large when the phase is close to π/2. The output of a frequency-to-voltage
converter is seen in Fig. 6.1(d), where it is evident that when the frequency
is a multiple of the mains frequency (50 Hz) the signal becomes more
noisy.

6.3 A least-squares fit to a straight line with
non-uniform error bars

In Chapter 5, Section 5.2.1, we applied the method of least squares to evaluate
the slope and intercept (and their uncertainties) of a straight-line fit to a
data set without taking into account the uncertainties in the measurements.
It is possible to include the uncertainties in the analysis, and in this sec-
tion we extend the treatment to perform a weighted least-squares fit to the
straight line y (xi ) = m xi + c. The method of least squares can be used to
generate analytic expressions (Taylor 1997, pp. 201–4, or Press et al. 1992,
Section 15.2) for the slope, m, the intercept, c, and their uncertainties αm

and αc:

c =
∑

i wi x2
i

∑
i wi yi − ∑

i wi xi
∑

i wi xi yi

�
′ , (6.3)

and

m =
∑

i wi
∑

i wi xi yi − ∑
i wi xi

∑
i wi yi

�
′ , (6.4)



70 Least-squares fitting of complex functions

with errors,11With a carefully constructed spreadsheet
the terms wi , wi xi , wi x2

i , wi yi , wi xi yi ,
their products and summations required for
the evaluation of eqns (6.3)–(6.7) are easily
determined. αc =

√∑
i wi x2

i

�
′ , (6.5)

and

αm =
√∑

i wi

�
′ , (6.6)

where

�
′ =

∑
i

wi

∑
i

wi x2
i −

(∑
i

wi xi

)2

. (6.7)

The weighting for each point, from eqn (4.25), is the inverse square of the
uncertainty, wi = α−2

i , and the summation is over all the data points.2
2Equations (5.1)–(5.5) in Chapter 5 are a spe-
cial case of eqns (6.3)–(6.7) with the weight-
ing, w, being the same for each data point.

We will now illustrate the mathematical results of eqns (6.3)–(6.6) with
worked examples from Fig. 6.1 and we will compare the results of the weighted
fit with the unweighted values obtained in Chapter 5.

There are two fitted lines shown on both graphs in Fig. 6.2. The dashed
line is the unweighted least-squares fit. This procedure gives equal weighting
to all the data points. When the error bars are not uniform, a better strategy
is to give more weighting to the data points with least uncertainty; this is
inherent in eqns (6.3)–(6.6). The results of this weighted least-squares fitting
are shown as the solid lines in Fig. 6.2. The results of the fits are summarised
in Table 6.1.

For graph (a) in Fig. 6.2 the weighted and unweighted fits give very simi-
lar gradients, and errors in gradients. Note, however, the order-of-magnitude
reduction in the uncertainty in the intercept obtained with the weighted least-
squares fit. The weighted fit gives significantly more credence to the data with
the smallest error bars; in this case these are the ones close to the origin, hence
the better estimate of the intercept. For graph (b) in Fig. 6.2 the gradients
determined by the two methods are distinct—this is a consequence of the
weighted fit giving less importance to the two points with large error bars,
which ‘pull down’ the unweighted line of best fit. We note that the uncertainty
in the weighted gradient is also smaller.

Fig. 6.2 Weighted (solid) and unweighted
(dashed) lines of best fit for two of the data
sets of Fig. 6.1 Details of the gradients, inter-
cepts and their uncertainties can be found in
Table 6.1.
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Table 6.1 Details of the gradients and intercepts from Fig. 6.2.

Graph (a) Graph (b)

Unweighted Weighted Unweighted Weighted

Gradient 1.03 ± 0.02 1.01 ± 0.01 (1.9 ± 0.2) mV/Hz (2.03 ± 0.05) mV/Hz

Intercept −0.5 ± 0.9 0.01 ± 0.08 (0 ± 1) × 10 mV (−1 ± 3) mV

Fig. 6.3 Computer generated data sets with
Gaussian noise. For (a), m = 2.01 ± 0.01
and c = −0.02 ± 0.07; (b) m = 1.99 ± 0.01
and c = 0.04 ± 0.08; (c) m = 1.97 ± 0.03
and c = 0.09 ± 0.06 and (d) m = 2.04 ±
0.04 and c = −0.3 ± 0.4.

6.3.1 Strategies for a straight-line fit

An interesting feature of Table 6.1, which contains the least-squares best-
fit parameters to the data of Fig. 6.2, is the order-of-magnitude reduction in
the error bar for the uncertainty with the weighted fit. There are two broad
categories of experiments in the physical sciences—the first seeks to verify the
form of a physical law as manifest in a mathematical relation; the second seeks
to extract a parameter from a well-known physical law. If the experimenter is
performing the first type of experiment, there is no a priori preference for
reducing the error bars for particular data points. In contrast, for experiments
for which a linear regression (y(xi ) = mxi + c) will be performed the strate-
gies are clear:

(1) If one wishes to know the intercept with great precision, the best strategy
is to invest most of your time and effort in reducing the error bars on the
points close to the y-axis. Reducing the error bars on points which are
far removed from the intercept will hardly alter the magnitude of the
error in the intercept (Fig. 6.1a and b).

(2) If one wishes to know the gradient with great precision, the experi-
menter should devote most time and effort in reducing the size of the
error bars for two points at the extrema of the data set—i.e. the data
point with the smallest x-value, and the one with the largest x-value. A
more robust measurement will be obtained if the data are recorded over
as large a range as can be realised with the experimental apparatus or
for which the theory is valid. Again, it is a waste of resource to measure
points in the middle of the range of x values as they will hardly influence
the error on the gradient (Fig. 6.1c).

These points are further illustrated in Fig. 6.3, which shows four computer-
generated heteroscedastic data sets. In parts (a)–(c) the points close to the y-
axis have a small error bar, consequently the error in the intercept is small.
In part (d), by contrast, the points close to the y-axis have large error bars,
leading to a corresponding increase in the error of the intercept. In parts (a)
and (b) the error bars of the points at the extrema of the data set are small,
hence the error in the slope is small; in parts (c) and (d) for one of the extrema
the data are relatively poorly known, which is reflected in the larger uncertainty
in the slope.
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6.3.2 Analysis of residuals with non-uniform error bars

As we saw in Chapter 5 a powerful way to learn rapidly about the quality
of the fit is to plot the residuals, yi − y(xi ). For heteroscedastic data the raw
residuals are more difficult to interpret. It is therefore useful to introduce the
dimensionless quantity, the normalised residual, Ri , defined as

Ri = yi − y (xi )

αi
, (6.8)

where yi , αi and y (xi ) are the i th measurement, uncertainty and value of the fit,
respectively. An analysis of the residuals to the fit of graph (a) from Fig. 6.2
is shown in Fig. 6.4. The data and the best-fit straight line are shown in the
upper panel, part (a) shows the raw residuals, and panel (b) the normalised
residuals. We note that the raw residuals grow in magnitude with increasing
trial number. However, analysis of the normalised residuals shows that 65%
are scattered within ±1 and 96% are within ±2, as expected for a good fit.
Unlike the case for homoscedastic data, the shape of the histogram of the raw
and normalised residuals will be different; the presence of a bias or trend in the
data would manifest itself much more obviously in a visual inspection of the
normalised residuals. The validity of Gaussian uncertainties of the data is also
easier to verify with normalised residuals.Fig. 6.4 An analysis of the residuals to the fit

of graph (a) from Fig. 6.2. The data and the
best-fit straight line are shown in the upper
panel; part (a) shows the residuals, and panel
(b) the normalised residuals. As this is a het-
eroscedastic data set the raw residuals are
difficult to interpret, whereas the normalised
residuals are seen to be scattered within ±2
of zero, as expected for a good fit.

6.4 Performing a weighted least-squares
fit—beyond straight lines.

6.4.1 Least-squares fit to an nth-order polynomial

We now consider having a theoretical model which is not restricted simply to
a straight line. Consider first the nth-order polynomial:

y (x) = a0 + a1x + a2x2 + · · · + an xn =
n∑

k=0

ak xk . (6.9)

Note that the function depends linearly on the coefficients ak . One can sub-
stitute eqn (6.9) into eqn (6.1), and minimise the goodness-of-fit parameter
χ2 by taking partial derivatives with respect to each of the parameters in
turn, and setting them to zero. This procedure yields (n + 1) linear coupled
equations for the (n + 1) coefficients. It is possible to solve the relevant
coupled equations with matrix methods3 to yield the best-fit coefficients, and3In practice for anything higher than a third-

order polynomial numerical techniques are
used.

their uncertainties (Bevington and Robinson 2003, Section 7.2, Press et al.
1992, Section 15.4). It is also possible to use computer software to minimise
χ2, and this is the approach we will use throughout the remainder of the
chapter.

6.4.2 Least-squares fit to an arbitrary nonlinear function

Many of the theoretical models which describe experiments performed in the
physical sciences involve a nonlinear dependence on some, or all, of the model
parameters. In general there will not be an analytic solution for the best-fit
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parameters. We will still use the goodness-of-fit parameter χ2 from eqn (6.1)
to define the problem, and discuss the numerical methods of obtaining the
minimum value of χ2 in Chapter 7.

The generalisation of eqn (6.9) to an arbitrary nonlinear function with N
parameters is:

y (x) = f (x ; a1, a2, . . . , aN ) . (6.10)

Using an arbitrary nonlinear function necessitates numerical methods for find-
ing the optimum parameters. The first stage in fitting your data is to define
explicitly the theoretical model which describes your data. This choice is
often motivated by some physical insight or prior experience.4 The method

4It is important to define the problem care-
fully: a given data set can always be fitted to
any function if enough parameters are intro-
duced.for obtaining the best-fit parameters is the following:

• For each value of the independent variable, xi , calculate y(xi ) from eqn
(6.10) using an estimated set of values for the parameters.

• For each value of the independent variable calculate the square of the

normalised residual,
[

(yi −y(xi ))
αi

]2
.

• Calculate χ2 (by summing the square of the normalised residuals over
the entire data set).

• Minimise χ2 by optimising the fit parameters.

The minimum value of χ2 must be found using numerical methods either by
trial-and-error or through more elaborate methods which we discuss in more
detail in Chapters 7 and 9. Often a handful of iterations via trial-and-error
will yield coarse estimates of the best-fit parameters. Invariably computers are
required to facilitate a precise and efficient estimate of the best-fit parameters,
especially if the number of parameters or data points is large. As the minimisa-
tion procedure of χ2 is a complex problem in its own right it is important that
the minimisation starts with reasonable estimates of the parameters that will be
optimised. This ubiquitous method is implemented in data analysis and fitting
packages, but can be readily incorporated into either a spreadsheet or fitting
algorithm.

We illustrate these ideas by considering the example shown in Fig. 6.5(a)
which shows the voltage across the inductor in an LCR circuit as a function of
time when the circuit is driven externally by a square wave.

A theoretical analysis predicts that the form of the voltage as a function of
time is a nonlinear function, V (t; a1, a2, . . . , aN ) and we construct a model

Fig. 6.5 Experimental data of the voltage
across an inductor in an LCR circuit as a func-
tion of time, and the best-fit theoretical model
of eqn (6.11). The inset shows detail of the
oscillations, and the magnitude of the experi-
mental error bars. The histogram shows the
distribution of normalised residuals. Nearly
all of the data lie within ±2 error bars of the
theoretical model, which is consistent with a
good fit.
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which is a damped sinusoidal oscillation with five parameters:

V (t) = Vbgd + V0 cos

(
2π

t

T
+ φ

)
exp(−t/τ). (6.11)

Here, Vbgd is a background voltage, V0 the amplitude of oscillation, T the
period of the oscillations, φ a relative phase between the driving field and
voltage across the inductor, and τ an amplitude-decay, or damping, constant.
For this data set, we would like to know the period of oscillations and the
damping constant. The data consists of 2200 values of time, voltage and error
in voltage (ti , Vi , αi ). To obtain the best-fit parameters the following procedure
was adopted: for each value of ti , a theoretical voltage V (ti ) was calculated
using eqn (6.11) with reasonable estimates of the five parameters, Vbgd, V0,
T , φ and τ . The estimates of the parameters were deduced by analysing the
experimental data. χ2 was calculated and subsequently minimised by varying
all the five parameters to yield the best-fit line shown overlaid with the data in
Fig. 6.5(a).

Two obvious questions now arise: (i) is the theoretical model appropriate for
the data? and, if so, (ii) what are the errors in the best-fit parameters? We shall
address the latter in the next section, and the former in detail in Chapter 8.
However we can obtain a qualitative answer to the question ‘is the theoretical
model appropriate for the data?’ by conducting a visual inspection of our fit
and the normalised residuals. A good fit will have approximately two-thirds
of the data within one error bar of the theoretical function and a histogram of
the normalised residuals which is Gaussian. We note that for the particular fit
shown in Fig. 6.5(a) approximately two-thirds of the data points are consistent
with the theory, and the histogram of the normalised residuals is also well
modelled by a Gaussian distribution (the continuous line in Fig. 6.5b).

Given that the model is appropriate, we now show how to answer the
question ‘what are the uncertainties in the best-fit parameters?’ for a nonlinear
function. Note that it would be inappropriate to proceed with this analysis if
the fit were poor.

6.5 Calculating the errors in a least-squares fit

In Section 5.3.1, Fig. 5.8, we showed how the goodness-of-fit parameter for a
simple function, y = mx , evolved as m was varied for a given data set. This
evolution results in a one-dimensional curve with a clear minimum, which
defines the best-fit value. In the more general examples above, where one is
fitting more complex functions with non-uniform error bars, the goodness-of-
fit parameter remains χ2, but we now need to consider the evolution of χ2 over
a surface defined by the many fit parameters.55This is often referred to as an N -

dimensional hyper-surface.

6.5.1 The error surface

We begin this discussion by considering the special case of a nonlinear function
with two parameters, f (A, B), before extending the discussion to the more
general case.
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For a two-parameter function the equivalent of Fig. 5.8 in Section 5.3.1 is
now a two-dimensional surface which is shown schematically in Fig. 6.6. The
coordinates of the point in the A–B plane at which χ2 is minimum define the
best-fit values of the fit parameters, A and B, shown by the dot in the centre.
In the plot we also show contours of constant χ2 around the minimum value,
χ2

min. The shape of the error surface in the vicinity of the minimum shows
how the fit is sensitive to the variations in the fit parameters. A high density of
contours along a given parameter axis indicates high sensitivity to that para-
meter and conversely a sparse contour density shows that the fit is insensitive
to that parameter. In general the shape of a fixed χ2 contour will be elliptical.
The tilt of the contours yields information about the correlation between the
uncertainties in parameters, a topic which is discussed extensively in Chapter 7.
When the ellipse axes coincide with the parameter axes, the uncertainties in the
parameters are independent. For the remainder of this chapter we will assume
that the contour plot of χ2 is a well-behaved function with a single minimum.
Strategies for dealing with more complex error surfaces will be outlined briefly
in Chapter 9.

Fig. 6.6 Contours of constant χ2 in the
A−B plane for a general two-parameter
nonlinear function f (A, B). The minimum
value of χ2, χ2

min, is obtained with the

best-fit values of the parameters, A and B,
shown by the dot in the centre. The contours
increase in magnitude as one departs from the
best-fit parameters.One can investigate the shape of the error surface in the vicinity of the

minimum by performing a Taylor-series expansion of χ2. For one parameter
the second order of expansion reads:

χ2 (a j + �a j
) = χ2 (a j

) + 1

2

∂2χ2

∂a2
j

∣∣∣∣∣
a j

(
�a j

)2
, (6.12)

where �a j is the excursion of the parameter away from its optimal value,
a j . There is no linear term in eqn (6.12) as the first-order derivative of χ2

disappears at the minimum. In the next section we will see that for an excursion
equal in magnitude to the size of the error bar, the value of χ2 will increase by
1. This allows us to write the standard error in the parameter in terms of the
curvature of the error surface:

α j =
√√√√√ 2(

∂2χ2

∂a2
j

) . (6.13)

We see that a large curvature of χ2 near the optimal value results in a small
standard deviation of the parameter a j . This is a mathematical way of relating
the contour density to the uncertainty in the parameter. We will return to this
mathematical formalism for evaluating the uncertainties in parameters from
the curvature of the error surface in Chapter 7, where we will discuss the
correlation of the parameters, and thus the correlations between the parameter
uncertainties, in terms of the Hessian matrix.

6.5.2 Confidence limits on parameters from weighted
least-squares fit

Having ascertained the best-fit parameters from a weighted least-squares fit
and undertaken a qualitative analysis of the quality of the fit, the question
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Table 6.2 Confidence limits associated with various �χ2 contours for one
degree of freedom.

�χ2 contour 1.00 2.71 4.00 6.63 9.00

Measurements within range 68.3% 90.0% 95.4% 99.0% 99.7%
1σ 2σ 3σ

remains ‘what are the errors on the best-fit parameters?’. Specifically, one
would like to know the 68% (1σ ), 95.4% (2σ ), etc. confidence limits. We
have seen that the value of χ2 is an indicator of the goodness of fit and in
the previous section how the variation of χ2 around its minimum is related to
the sensitivity of the fit to the individual parameters. We can therefore use the
variation in χ2 from its minimum value, χ2

min, which is �χ2, to characterise
the uncertainties in the best-fit parameters.

Fig. 6.7 The �χ2 = 1 contour in the A–B
plane. The horizontal and vertical tan-
gent planes define the uncertainties in the
parameters.

How do we determine which �χ2 contour represents the 68% confidence
limit for a given parameter? The probability of χ2 changing by a certain
amount is given by the probability distribution function of χ2 (discussed in
detail in Chapter 8) with the appropriate degrees of freedom. From the PDF of
χ2 for one degree of freedom we can calculate the �χ2 values that correspond
to a particular confidence limit. For one degree of freedom these �χ2 contours
are given in Table 6.2.

In the example shown in Fig. 6.7, the �χ2 = 1 contour is plotted. This
is the contour that corresponds to the confidence limit that we have adopted
for our error bar throughout this book. This contour defines a confidence
region in the A–B plane for both parameters. However, what we require is
the confidence limit for a single parameter—in this case either A or B. To
extract the confidence limit in one of the parameters, we do not read off the
intersection of the relevant contour with the parameter axis, but rather take
the extremum of the ellipse. As shown in Fig. 6.7 there are four extrema of
the ellipse; two are extrema for B and occur at the horizontal tangent planes,
with the other two being extrema for A occurring at the vertical tangent planes.
The difference between the value of A at which the extremum occurs and the
best-fit value, A, defines the error bar, αA.

Fig. 6.8 The procedure for obtaining the
uncertainties in the best-fit parameters. χ2

min
is achieved when the parameters have the
values A, B. If A is increased with B held
constant one follows the trajectory labelled 1
to arrive at the desired �χ2 contour. Then,
B must be allowed to vary to reduce χ2,
which results in motion across the error sur-
face along the path labelled 2. This iterative
procedure is repeated until an extremum of
the desired �χ2 contour is achieved, where
the coordinate of the abscissa yields A + αA .
Repeating this procedure from A, B by keep-
ing A constant and increasing B will give the
error bar for B.

To arrive at the extremum of a particular �χ2 contour requires a series
of orthogonal steps across the error surface. So, if one wishes to find the
projection of a particular contour in A, the first stage would be to move along
the error surface from the location of χ2

min changing A from its optimal value A
until the appropriate contour is reached (path 1 in Fig. 6.8). Having reached this
point, an orthogonal motion is undertaken by re-optimising B whilst keeping
A at its new value (path 2 in Fig. 6.8). These two steps are repeated until no
discernible change is observed in the χ2 value. It is not too difficult to automate
this process in most spreadsheet packages. The difference between the final
iterated value of A, A + αA, and the optimal value, A, is the uncertainty in A.
The mathematical operations required to move to the extremum of a particular
�χ2 contour are two independent χ2 minimisations. For the special case of
a two-parameter fit, both operations are χ2 minimisations with one degree of
freedom.
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Extending the procedure for N parameters (a1, a2, . . . , aN ) is similar to
that described above for the two-dimensional case. The error surface becomes
N -dimensional. Navigating this surface involves making a change to one of
the parameters from its optimal value as before and then re-optimising all
other N − 1 parameters. As before, both operations are independent χ2 min-
imisations. The minimisation where the parameter of interests is changed has
one degree of freedom; the re-optimisation of all other parameters has many
degrees of freedom. Thus, for the uncertainty in the single variable of interest,
the �χ2 contours which correspond to a particular confidence level remain
those listed in Table 6.2. If one is interested in the other confidence limits
listed in Table 6.2 one follows the same procedure to locate the extremum of
the appropriate �χ2 contour.

A summary of calculating errors on parameters using χ2 minimisation

(1) Find the best-fit parameters by minimising χ2.
(2) Check the quality of the fit. If the fit is poor, there is little point in

using, or calculating, the errors in the best-fit parameters.
(3) Adjust the parameter whose error you wish to determine until χ2

becomes χ2
min + 1.

(4) Re-minimise χ2 using all the other parameters, but not the parameter
whose error you are measuring.

(5) Iterate 3 and 4 until the value of χ2 does not change (within some tol-
erance). The standard error on the parameter is the absolute difference
between the current and optimal value of that parameter.

(6) Repeat steps 3–5 for each of the remaining fit parameters of interest.

We now illustrate some of these abstract concepts explicitly through worked
examples.

6.5.3 Worked example 1—a two-parameter fit

Figure 6.9 shows the �χ2 contours for the two parameters (gradient, m,
and intercept, c) of the weighted least-squares straight-line fit to the data of
Fig. 6.1(d). The coordinates of the location of χ2

min are m = 2.03 mV/Hz, and
c = −1 mV, in agreement with Table 6.1. Some of the contours of Table 6.2
are indicated on Fig. 6.9.

We can obtain the error in the slope by looking at the coordinates of the
extremum of the �χ2 = 1 contour along the gradient axis. The lower right-
hand extremum for m is located at m = 2.08 mV/Hz, giving the uncertainty in
m as αm = 2.08 − 2.03 = 0.05 mV/Hz. A similar procedure using the lower
extremum for the intercept gives αc = −1 − (−4) = 3 mV.6 We obtain iden- 6The extremum of the �χ2 = 1 contour

along one axis does not occur at the same
coordinates as the extremum along the
orthogonal axis. Thus two separate iterations
are required to obtain the value of the errors
for both parameters.

tical values of the error for either parameter if we choose the other extremum.
The fact that the axes of the contours of χ2 around the minimum are not

coincident with the m–c axes is an indication of the degree of correlation
between the variables. We will discuss the implications of such a correla-
tion in Chapter 7. The importance of allowing the other parameters to be
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Fig. 6.9 A contour plot showing iso-χ2 lines for the gradient and intercept of the straight-line fit to the data of Fig. 6.1(d). The �χ2=1, 4, 9 and
2.71 contours correspond, respectively, to one, two, three standard deviations, and the 90% confidence limit.

Fig. 6.10 Cuts through the error surface of
Fig. 6.9 as a function of (a) the gradient,
and (b) the intercept. The dashed lines are
obtained when one parameter is varied, and
the other held at its optimum value; the solid
line is obtained when one parameter is var-
ied, and the other re-optimised to minimise
χ2. The open circles correspond to increases
in χ from χ2

minof 1, 2.71, 4 and 9 and are
the extrema along the appropriate axes of the
ellipses in Fig. 6.9.

re-optimised when evaluating the error in one of the parameters is highlighted
in Fig. 6.10.

Parts (a) and (b) of Fig. 6.10 show the variation of χ2 with respect to the
gradient and intercept, respectively. The dashed curves show the variation with
respect to one parameter, when the other is left at its optimum value. In con-
trast, the solid curves show the variation with respect to one parameter, when
the other is re-optimised. It is the latter which yields the confidence limit on
the parameters. The �χ2 = 1 contour is reached at a gradient of 2.05 mV/Hz
if m is increased and the intercept kept as c which gives an unrealistic error
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of 0.02 mV/Hz. However, following the procedure depicted in Fig. 6.8, the
extremum is at a value of 2.08 mV/Hz and the uncertainty is 0.05 mV/Hz,
more than double the value obtained without re-optimising the intercept. The
more tilted the contours are, the more extreme this difference becomes.

Fig. 6.11 (a) An X-ray diffraction peak as a
function of scattering angle. The model com-
prises a Lorentzian peak on a constant back-
ground. (b) Contour plot of the background
and centre of the peak. (c) Contour plot of
peak width and background. (d) The varia-
tion of χ2 around the optimum background
value, where the other three parameters are
re-optimised for each background value.

6.5.4 Worked example 2—a multi-parameter fit

Here we look at an example of a four-parameter fit. The data in Fig. 6.11(a)
show the number of counts per second (c.p.s.) when X-rays are diffracted from
the (111) peak of a thin film of permalloy as a function of the scattering angle.
The error bars come from Poisson count statistics. The model to describe the
data has four parameters: the height of the Lorentzian lineshape, S0, the angle
at which the peak is centred, θ0, the angular width of the peak, �θ , and a
constant background offset, Sbgd. Mathematically, the signal, S, is of the form:

S = Sbgd + S0

1 + 4
(

θ−θ0
�θ

)2
. (6.14)

The error surface for this problem is four dimensional. To extract the uncer-
tainty in a parameter one needs to reduce this four-dimensional surface to a sin-
gle one-dimensional slice as shown in Fig. 6.11(d). This is achieved by varying
the parameter of interest and allowing all other parameters to be re-optimised to
minimise χ2. Additionally it is useful to consider two-dimensional slices of the
error surface to investigate the correlation of the parameters. These 2D surfaces
are created by varying two of the parameters and allowing all other parameters
to be re-optimised to minimise χ2. In Fig. 6.11(b) and (c) we show the two-
dimensional surface contours of �χ2 where we investigate the correlation
between the background and peak centre in (b) and the background with peak
width in (c). In Fig. 6.11(b) the contour ellipses close to χ2

minare aligned with
the coordinate axes, indicating that there is very little correlation between
the background and the peak centre. In contrast the contours are tilted with
respect to the axes in Fig. 6.11(c), indicating a negative correlation between
background and peak width. The rotation of the ellipse is a manifestation of
the fact that the background and width can be played off against each other to
a certain extent—an increase of the background can be partially compensated
for by a decrease of the width of the peak. The influence on the uncertainty of
one parameter owing to correlation with other parameters is taken into account
by allowing all the other parameters to be re-optimised when calculating the
one-dimensional variation of χ2 with respect to that parameter in the vicinity
of the minimum (Fig. 6.11d).

6.6 Fitting with constraints

A physical insight often allows the number of independent fitting parameters
to be reduced. A constraint is easily incorporated into most fitting packages or
a spreadsheet.



80 Least-squares fitting of complex functions

Consider the data shown in Fig. 6.12 displaying the (a) real and (b) imag-
inary parts of the electrical susceptibility of a medium comprising laser-

Fig. 6.12 Plots of (a) the real and (b) the
imaginary parts of the electrical susceptibil-
ity of a sample of laser-cooled atoms. The
former is proportional to the refractive index
of the medium, the latter to the absorption
coefficient. These quantities are related via
the Kramers–Kronig relations.

cooled atoms. The data in part (a) follow the dispersion curve associated
with the spectral dependence of the refractive index, whereas the absorption
spectrum of (b) displays a Lorentzian lineshape. The Kramers–Kronig rela-
tions explain how the knowledge of the spectral response of either the real
or imaginary part of the susceptibility enables the other to be calculated. The
theoretical prediction is that the complex electrical susceptibility, χE , in this
situation is

χE = χ0
�

� − i�
, (6.15)

where � = ω − ω0 is the detuning (the difference between the applied fre-
quency and the resonant frequency), and � is the linewidth. By calculating
eqn (6.15) in a spreadsheet, with two parameters, the real and imaginary parts
can be compared with the experimental data and their uncertainties. A least-
squares fit can then be conducted simultaneously on both data sets. Simultane-
ous data fitting is difficult to achieve using a fitting package, but is relatively
straightforward in a spreadsheet. The thick lines on the figures show the results
of such a minimisation procedure. The result obtained for the linewidth with
this procedure is � = 37.69 ± 0.03 MHz; when the two data sets are analysed
individually, less precise results are obtained: � = 37.71 ± 0.04 MHz from the
real part, and � = 37.66 ± 0.05 MHz from the imaginary component.

During a minimisation procedure it is possible, on occasion, for χ2 to be
reduced by extending the value of a parameter outside a range for which it is
physically realistic. Most fitting or spreadsheet packages enable constraints to
be applied during the minimisation. The experimenter should ensure that after
minimisation all parameters remain within a physically realistic domain, even
if this means a higher χ2

min value.
Sometimes the experimenter has some prior knowledge which can be useful

in constraining fit parameters. Examples include branching ratios, the ratio of
masses, mass differences, and atomic energy level intervals. Figure 6.13(a)
shows an X-ray diffraction spectrum of the (3 1 1) peak of Cu. There are,
in fact, two unresolved peaks which have a width greater than their angular
separation. It is known that the peaks must have the same lineshape func-
tion, the same angular width, and a well-defined angular separation. A multi-
dimensional χ2 fit was performed, and the result is shown as the solid line in
Fig. 6.13. In this case the relative heights of the peaks was allowed to float
as a free parameter, but analysis of the optimal parameters gave a ratio of the
intensity of the two peaks as 2.1 ± 0.1, consistent with the theoretical value of
1.96. One could have used the theoretical value to constrain the parameters (i.e.
reduce the number of fitting parameters by 1), or, as here have allowed them
to float. Although this increases the number of fit parameters it is a useful
test of the validity of the theoretical model, especially when the number of
data points greatly exceeds the number of parameters. Note that allowing the
widths of the two components to vary independently, in this case, leads to
inconsistent results with poor precision; similarly, fitting the data with a single-
peak function results in a poorer fit with unrealistic peak widths.
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6.7 Testing the fit using the residuals

In Chapter 5 and in section 6.3.2 we stressed the importance of investigating
the normalised residuals as an indicator of the quality of a fit. We return to this
topic in this section and show how an incorrect model can lead to structure and
autocorrelations in the normalised residuals. In Fig. 6.13 we show two fits to
the X-ray diffraction spectrum from the (3 1 1) peak of Cu that was discussed
in Section 6.6. In Fig. 6.13(a) the correct constrained model with two peaks is
used to fit the data, whereas in (b) we show the fit to an erroneous model based
on a single peak. A quick visual inspection of the two figures shows that both
fits reproduce most of the main features, but a closer inspection of the residuals
shows structure in the normalised residual plot close to the fitted peak centre
in Fig. 6.13(b).

Fig. 6.13 Experimental spectra and
weighted least-squares-fit (thick line) for
the Cu (3 1 1) X-ray diffraction peak. In (a)
the fit and residuals are shown for a
constrained double peak model and in
(b) the experimental data are fitted to a
single-peak function. The residuals are
randomly distributed for the double-peak fit,
but show structure for the single-peak fit.

Structure in the residuals can be visualised more clearly by making use
of a lag plot which is constructed by plotting the normalised residual Ri

(see eqn 6.8) against a lagged residual Ri−k where k is an integer, and is
usually 1. These plots are useful for identifying outliers and for testing the
randomness of the errors. Any non-random pattern in the lag plot is an indicator
of autocorrelations in the residuals and suggests something is missing from the
theoretical model. In Fig. 6.14 the lag plots for k = 1 are shown for the two
fits in Fig. 6.13. The lag plot for the constrained fit (Fig. 6.14a) shows no
structure, but that of the single-peak fit (Fig. 6.14b) clearly shows a positive
trend suggesting a positive correlation between some of the lagged residuals.
For a good fit we expect that, if the uncertainties in the data are Gaussian, 91%
of the normalised residuals should fall within a two-dimensional box defined
by the ±2 limits on the lag plot. For the constrained fit, the number of residuals
inside this box is 93%, in excellent agreement with this hypothesis. On the
other hand, the single-peak fit only has 82% of the data points which are within
the box, indicative of a poor fit.

The degree of correlation, or shape, in the lag plot can be reduced to a
single numerical value by evaluating the Durbin–Watson (Durbin and Watson
1950) statistic, D. In its weighted form, for k = 1, D is defined in terms of the
normalised residuals:

D =

N∑
i=2

[
Ri − Ri−1

]2

N∑
i=1

[Ri ]2

. (6.16)

The Durbin–Watson statistic has values in the range 0 < D < 4 and may
indicate three limiting cases:

(1) D = 0: systematically correlated residuals;
(2) D = 2: randomly distributed residuals that follow a Gaussian distribu-

tion;
(3) D = 4: systematically anticorrelated residuals.

An experimenter should be highly suspicious if the value of D approaches
either 0 or 4, and question the fit should D differ significantly from 2. For
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homoscedastic data sets it is possible to use the D statistic to test the quality
of the fit but in Chapter 8 we will discuss a more robust test based on the χ2

statistic. For the examples shown in Fig. 6.13 the Durbin–Watson statistic is
1.97 for the constrained fit and 1.12 for the erroneous fit. As D is very close
to 2 for the constrained double-peak fit we would expect that this model was
better than the alternative single peak for which D was significantly different
from 2.

Fig. 6.14 Lag plots with k = 1 of the nor-
malised residuals shown in Fig. 6.13. (a) The
lag plot from the two-peak fit with 93% of
the normalised residuals within ±2σ of the
zero mean. (b) The lag plot from Fig. 6.13(b)
in which a clear linear trend is observed and
only 82% of the data are within the expected
confidence limit. The Durbin–Watson statis-
tic D is 1.97 for fit (a) and 1.12 for (b).

Chapter summary

• A sequence of data points with non-uniform error bars is referred to as
heteroscedastic.

• The goodness-of-fit parameter is χ2 =
∑

i

(yi − y (xi ))
2

α2
i

, with y (xi )

the theoretical model, yi the data and αi the corresponding error bars.
• For linear regression, y (xi ) = m xi + c, with non-uniform error bars

there exist analytic solutions for the best values of the slope, m, the
intercept c and their associated errors:

m =
∑

i wi
∑

i wi xi yi − ∑
i wi xi

∑
i wi yi∑

i wi
∑

i wi x2
i − (∑

i wi xi
)2

,

αm =
√√√√ ∑

i wi∑
i wi

∑
i wi x2

i − (∑
i wi xi

)2
,

c =
∑

i wi x2
i

∑
i wi yi − ∑

i wi xi
∑

i wi xi yi∑
i wi

∑
i wi x2

i − (∑
i wi xi

)2
,

αc =
√√√√ ∑

i wi x2
i∑

i wi
∑

i wi x2
i − (∑

i wi xi
)2

,

where the weighting for each point is the inverse square of the uncer-
tainty, wi = α−2

i , and the summation is over all the data points.
• The best-fit parameters for a nonlinear function are usually found by

computer minimisation. The best-fit parameters are the ones for which
χ2 is at a minimum, χ2

min. The uncertainty in a given parameter can
be found by an iterative procedure: the parameter A is increased from
the best value, Ā, with all the other parameters held constant until χ2

has increased by 1. Then, all the other parameters must be allowed
to vary to reduce χ2. A is increased again, and the process repeated
until convergence is obtained. The value of A at which this occurs
is Ā + αA.
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Exercises

(6.1) Linear regression—unweighted fit
The data plotted in Fig. 6.1(d) are listed below.

Frequency (Hz) 10 20 30 40 50 60
Voltage (mV) 16 45 64 75 70 115
Error (mV) 5 5 5 5 30 5

Frequency (Hz) 70 80 90 100 110
Voltage (mV) 142 167 183 160 221
Error (mV) 5 5 5 30 5

Use the results of Chapter 5 to ascertain the best-fit gra-
dient and intercept using an unweighted fit. Verify that
the results are in agreement with Table 6.1.

(6.2) Linear regression—weighted fit
For the data set of Exercise (6.1) use the results of
eqns (6.3)–(6.6) to calculate the best-fit gradient and
intercept using a weighted fit. Verify that the results are
in agreement with Table 6.1. Draw the lag plot, and
calculate the Durbin–Watson statistic D.

(6.3) Normalised residuals
Use the fit parameters from the last question to plot
the best-fit straight line with the data. Use eqn (6.8) to
calculate the normalised residuals, and plot them.

(6.4) Error bars from a χ2 minimisation
(i) For the data set of Exercise (6.1), write a spread-
sheet which you can use to perform a χ2 minimisa-
tion. Verify that χ2

min is obtained for the same values
of the parameters as are listed in Table 6.1. (ii) By
following the procedure of χ2 → χ2

min + 1 outlined in
Section 6.5, check that the error bars for m and c are
in agreement with Table 6.1. Let the parameters (a)
increase from their optimal values to find the extremum
for each parameter, and (b) decrease from their opti-
mal values to find the extremum for each parameter.
Are the uncertainties determined in (a) and (b) the
same? (iii) Calculate the uncertainties on m and c by
finding the extrema of the χ2 → χ2

min + 4 and χ2 →
χ2

min + 9 contours. Are your results in agreement with
Table 6.2?

(6.5) Speed of light
The data plotted in Fig. 6.1(c) are listed below.

Displacement (m) 0.05 0.25 0.45 0.65 0.85
Phase (rad) 0.00 0.21 0.44 0.67 0.88
Error (rad) 0.05 0.05 0.05 0.05 0.09

Displacement (m) 1.05 1.25 1.45 1.65 1.85
Phase (rad) 1.1 1.3 1.5 2.0 2.24
Error (rad) 0.1 0.2 0.5 0.1 0.07

The speed of light is related to the slope, m, of this graph

via the relationship speed of light = 2π×60×106

m Hz. Cal-
culate the the slope and intercept of the best-
fit straight line to the data, and their associated
errors. Hence deduce the speed of light, and its
error. The theoretical predication is that the inter-
cept should be zero. Is this consistent with the
data?

(6.6) Strategies for error bars
Consider the following data set:

x 1 2 3 4 5
y 51 103 150 199 251
αy 1 1 2 2 3

x 6 7 8 9 10
y 303 347 398 452 512
αy 3 4 5 6 7

(i) Calculate the weighted best-fit values of the slope,
intercept and their uncertainties. (ii) If the data set had
been homoscedastic, with all the errors equal, αy = 4,
calculate the weighted best-fit values of the slope, inter-
cept and their uncertainties. (iii) If the experimenter took
greater time to collect the first and last data points, for
which αy = 1, at the expense of all of the other data
points, for which αy = 8, calculate the weighted best-fit
values of the slope, intercept and their uncertainties, and
comment on your results.
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As we discussed in Chapter 6, the errors on the parameters, αi , are related
to how the χ2 hyper-surface varies around the minimum value, χ2

min. The
local curvature of the error hyper-surface is mapped out by calculating χ2 as
the parameters are displaced from their optimal values. Therefore, it is not
a surprise that there is a mathematical relationship between the curvature of
the hyper-surface and the magnitude of the errors of the fitted parameters, see
eqn (6.13). In this chapter we will develop a general matrix methodology for
describing the variation of the χ2 surface and for determining the uncertainties
in the fit parameters. We begin by discussing different types of algorithms used
in fitting packages to minimise χ2; this both serves to reinforce the discussion
of finding the best fit described in earlier chapters, and is a convenient way of
introducing the matrices from which the uncertainties in the fit parameters can
be deduced.

In the previous chapters we have implicitly assumed that both our para-
meters and their errors are independent. However, the statistical fluctuations of
the data lead to correlations among the uncertainties in the best-fit values of the
independent parameters. In Section 7.3 we detail how this degree of correlation
can be quantified and incorporated into error analysis.

The data are fitted using the standard chi-squared statistic, χ2, we have
seen previously. In general, we wish to fit our N data points, (xi , yi ),
with uncertainties given by αi , to a nonlinear function with N parameters,
f (x ; a1, a2, . . . , aN ). The analytic results of least-squares fitting discussed
in earlier chapters for linear regression cannot be used for nonlinear functions,
consequently we develop approximate iterative procedures for locating the
minimum of the multi-dimensional error surface.

7.1 How do fitting programs minimise?

We now return to discussing how computer fitting functions arrive at the
best fit. Irrespective of whether the minimisation process occurs within a
spreadsheet or a fitting program, all minimisation techniques are based on an
iterative method of improving a trial solution by a reduction in the goodness-
of-fit parameter. There are several different approaches that can be adopted
to navigate over the N -dimensional error surface to arrive at the minimum.
In this chapter we restrict our discussion to the easiest case where there is a
single minimum on the error surface. We outline five possible minimisation
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methods here; further details for these, and alternative, strategies can be found
in references such as Bevington and Robinson (2003, Chapter 8) and Press
et al. (1992, Chapters 10 and 15). Each of the techniques discussed in detail
are iterative, and proceed by applying an update rule. We first discuss these
concepts in the more familiar context of finding the zero of a function.

7.1.1 Iterative approaches

Fig. 7.1 The Newton–Raphson method for
finding the zero crossing of a function. After
s iterations the function is f (xs ), and its
derivative at xs is f ′ (xs ). The tangent to the
curve is drawn at xs , and the zero crossing of
the tangent found. This point is taken as the
updated coordinate of the zero-crossing point
of the function, xs+1. The iterative procedure
continues until convergence at the desired
tolerance.

The Newton–Raphson method is a numerical technique to solve the equation
f (x) = 0. It is an iterative procedure illustrated in Fig. 7.1. We assume that the
first approximate solution is x1, where the function is f (x1), and the first deriv-
ative f ′ (x1). Let the zero crossing of f (x) be at x1 + h, then f (x1 + h) = 0.
From Fig. 7.1 we see that if h is small

f (x1 + h) ≈ f (x1) + f ′ (x1) h,

∴ f (x1) + f ′ (x1) h ≈ 0,

∴ h ≈ − f (x1)

f ′ (x1)
. (7.1)

This allows us to write down a second approximation to the zero crossing:

x2 = x1 − f (x1)

f ′ (x1)
. (7.2)

The process can be repeated to obtain successively closer approximations. If
after s iterations the approximate solution is xs then the next iteration is xs+1,
and these quantities are related via the relation:

xs+1 = xs − f (xs)

f ′ (xs)
. (7.3)

Equation (7.3) is known as the update rule, as it allows the parameter (the cur-
rent best value of the zero crossing) to be amended. The procedure continues
until the zero-crossing point is found, to within a certain tolerance. If the first
guess for the solution is close to the actual solution, the procedure converges
rapidly. Conversely, if the first guess is far from the optimal value there are
two issues: (i) the convergence can be slower; and (ii) depending on the sign
of the gradient of the function it is possible that the updated solution will be
further from the optimal value than the current value. Therefore it is important
to have a reasonable first guess as the input to utilise the power of the Newton–
Raphson method. The convergence properties of this method are discussed in
Exercise (7.1), and the procedure can easily be extended to find maxima or
minima of a function, as shown in Exercise (7.2).

Fig. 7.2 An illustration of a grid search on
a two-dimensional error surface. Initial trial
values of the gradient and intercept were cho-
sen (gradient 1.90 mV s, intercept −8 mV),
and each parameter was optimised in turn
until convergence and the minimum χ2 was
obtained. Note the inefficient zig-zag motion
along the flat valley bottom.

7.1.2 Grid search

We illustrate the grid search method for finding the minimum of the error
surface by applying it to the case of Fig. 6.1(d) (the results of the minimisation
procedure are summarised in Table 6.1), as seen in Fig. 7.2. Starting values
of the trial parameters (gradient 1.90 mV s, intercept −8 mV) and step sizes
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are chosen. The minimisation proceeds through an iterative process whereby
the goodness-of-fit parameter is minimised by changing each parameter in
turn. From the initial position the gradient is kept the same, with the intercept
increased. If the value of χ2 increases, the direction of motion across the
error surface is reversed. Having started on a downhill trajectory, the values of
the parameter are changed until χ2 increases. Using the last three increments
of the parameter, it is easy to find the value at which the minimum occurs,
see Exercise (7.3)—this procedure is known as a line minimisation. The
procedure described above is then repeated for the intercept as shown in Fig.
7.2. This iterative procedure converges toward the local minimum. The grid-
search method is powerful in that it is easy to implement computationally if
fitting to a model which has analytic derivatives.

Fig. 7.3 The evolution of χ2, and the para-
meters as a function of iteration number for
the grid-search method. χ2 − χ2

min is shown
on a log scale in the inset of (a).

For a model with more than two parameters a similar procedure is applied,
with each parameter minimised in turn. The whole procedure is then repeated
until the convergence tolerance is met—the procedure is terminated when
the value of χ2 changes by less than, say, one part in 103. If the variation
of χ2 with respect to each parameter is insensitive to the values of the other
parameters, the axes of the χ2 contours are coincident with the parameter axes;
under these conditions the grid-search method converges rapidly. In the more
general case, as depicted in Fig. 7.2, there is a degree of correlation among the
parameters, and the contours of constant χ2 are tilted. Figure 7.3 shows the
evolution of χ2 and the parameters as functions of the number of iterations.
The trajectory across the error surface zig-zags, which is very inefficient, and
the convergence is slow. The advantages of the grid-search method are (i)
simplicity, and (ii) that the minimisation process is relatively insensitive to
the initial trial parameters. The major disadvantage is that convergence to the
minimum can be very slow for correlated parameters (the more general case).

7.1.3 The gradient-descent method

In the grid-search method each parameter was varied sequentially which is
not efficient. A more elegant approach is to increment all the parameters
simultaneously, with the aim of having a vector directed towards the minimum.
The vector ∇χ2 lies along the direction along which χ2 varies most rapidly
on the error surface. The minimisation proceeds by taking steps along this
steepest descent. The gradient along the direction of the parameter a j can be
approximated numerically by the formula(

∇χ2
)

j
= ∂χ2

∂a j
≈ χ2

(
a j + δa j

) − χ2
(
a j

)
δa j

, (7.4)

where δa j is a small increment in a j (typically much smaller than the step
size). Note that it is possible within the framework of some minimisation
algorithms to enter analytic formulae for the gradient with respect to the
parameters.

(m
V

)

Fig. 7.4 An illustration of a gradient-descent
method on a two-dimensional error surface.
Each parameter is optimised simultaneously
along a vector defined using the gradient.

Let the N -dimensional column vector as contain the N parameters a j after
s iterations. The update rule is

as+1 = as − β ∇χ2 (as) , (7.5)
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where the value of the scaling factor β is chosen such that the trajectory
proceeds downhill, but does not overshoot up the ascending side of a valley,
see Fig. 7.4. After each step, the direction of the steepest descent is calcu-
lated again and the process iterated. The method of steepest descent is good
at locating an approximate minimum, but is typically augmented by other
methods to locate the actual minimum. Major problems with this approach are
that as the goodness-of-fit parameters approach the minimum (i) the direction
chosen by the method of steepest descent is not the most efficient, and (ii)
the numerical determination of the derivative (eqn 7.4), which involves the
subtraction of two similar numbers, is error prone. For the case of Fig. 6.1(d)
the gradient-descent method converges to χ2

min at the 10−3 level within three
iterations, see the inset to Fig. 7.5, whereas the grid-search method takes
nearly 30 iterations to achieve the same level of convergence as seen in the
inset to Fig. 7.3. Note, however, that in this case the gradient-descent method
fails to make more progress, due to errors in determining the difference in
eqn (7.4).

An obvious issue with the convergence properties of the gradient-descent
method is inherent in the update rule, eqn (7.5). Intuitively, we would like
to take large steps at locations where the gradient is small (along the valley
bottom, for example), and small steps when the gradient is steep (to avoid
the problem of overshooting the valley bottom). Unfortunately the update
rule eqn (7.5) does the opposite of the intuitive strategy as the increment is
proportional to the magnitude of the gradient. The gradient is perpendicular to
the contour lines at the location where the gradient is evaluated, see Fig. 7.4.
After each iteration the direction of the gradient is orthogonal to the previous
step direction and hence the trajectory across the error surface proceeds ineffi-
ciently in a zig-zag manner down the valley. Many of the problems associated
with the method of steepest descent can be remedied by using knowledge of
the curvature of the error surface (the second derivatives) in addition to the
gradient.

Fig. 7.5 The evolution of χ2 and the para-
meters as a function of iteration number for
the gradient-descent method. χ2 − χ2

min is
shown on a log scale in the inset of (a).

7.1.4 Second-order expansion: the Newton method

The shape of the error surface in the vicinity of the minimum is approximately
parabolic, see Fig. 6.10, therefore a second-order expansion in the parameters
about the local minimum is an excellent approximation—this is the Newton
method. A Taylor-series expansion of χ2 about the set of parameters as

yields1
1This is a matrix version of eqn (6.12) gener-
alised to N dimensions; written explicitly as
a summation over components it would read

χ2 (as + h) ≈ χ2 (as ) + ∑N
j=1

∂χ2

∂a j

∣∣∣∣
as

�a j

+ 1
2
∑N

j=1
∂2χ2

∂a2
j

∣∣∣∣∣
as

(
�a j

)2
.

χ2 (as + h) ≈ χ2 (as) + gT
s h + 1

2
hTHsh. (7.6)

Here the small change in the parameters is the vector h; the gradient vector
gs (which has N components) is

gs = ∇χ2 (as) =
[

∂χ2

∂a1
, · · · ,

∂χ2

∂aN

]T

, (7.7)



7.1 How do fitting programs minimise? 89

and the N × N Hessian matrix Hs is

Hs = H (as) =

⎡⎢⎢⎢⎣
∂2χ2

∂a2
1

· · · ∂2χ2

∂a1∂aN
...

. . .
...

∂2χ2

∂a1∂aN
· · · ∂2χ2

∂a2
N

⎤⎥⎥⎥⎦ . (7.8)

In these equations the superscript T denotes the transpose operation.2 2The elements of the transpose of a matrix
are related to the elements of the original

matrix by the relation
(

AT
)

jk
= Akj .

At the location of the minimum ∇χ2 = 0, thus

∇χ2 (as + h) = gs + Hsh = 0, (7.9)

which has the solution

h = −H−1
s gs . (7.10)

Note that if χ2 has an exact quadratic dependence on the parameters then the
solution of eqn (7.10) is exact, and the problem is solved in one step; else, the
process is iterative, and we use the update rule for the next iterate:

as+1 = as + h = as − H−1
s gs . (7.11)

There exist many efficient matrix methods for solving the set of linear equa-
tions (7.10). Newton’s method has a quadratic convergence (the number of
accurate digits of the solution doubles in every iteration). Often the method
proceeds with a line minimisation, with a scaled step size (as described in
Section 7.1.3). Note that if the Hessian matrix is equal to the unit matrix
(H = 1) then this method is equivalent to the method of steepest descent.

7.1.5 Second-order expansion: the Gauss–Newton method

Newton’s method involves calculating and inverting the Hessian matrix, which
contains second-order derivatives of the χ2 surface. In the Gauss-Newton
method a simpler approximate form of the Hessian is used, as outlined below.

Let us rewrite χ2 as a sum over the N data points of normalised residuals:

χ2 =
N∑

i=1

R2
i , (7.12)

with

Ri = yi − y (xi ; a)

αi
. (7.13)

We define the (N × N ) Jacobian matrix as follows:

Js = J (as) =

⎡⎢⎢⎣
∂ R1
∂a1

· · · ∂ R1
∂aN

...
. . .

...
∂ RN
∂a1

· · · ∂ RN
∂aN

⎤⎥⎥⎦ . (7.14)
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Consider the gradient of χ2 with respect to the parameter a j :

∂χ2

∂a j
= ∂

∂a j

N∑
i=1

R2
i = 2

N∑
i=1

∂ Ri

∂a j
Ri . (7.15)

We see that we can write

∇χ2 = ∇
N∑

i=1

R2
i = 2 JT R. (7.16)

Here R is a column vector with N entries for the residuals. The elements of
the Hessian matrix are

∂2χ2

∂a j∂ak
= ∂2

∂a j∂ak

∑
i

R2
i = 2

∑
i

∂ Ri

∂a j

∂ Ri

∂ak
+ 2

∑
i

Ri
∂2 Ri

∂a j∂ak
. (7.17)

This equation contains two summations; the first over the product of gradients,
the second over second-order derivatives. If the second set of terms is ignored,
it is possible to approximate the Hessian in the compact form H ≈ 2JT J. The
justification for this approximation comes from looking at the magnitude of
the term multiplying the second-order derivative: it is simply the normalised
residual Ri . Typically, the normalised residuals should be small, and in the
vicinity of χ2

min scattered randomly around zero; hence, on being summed,
these terms should make a negligible contribution to the Hessian. By throwing
away the second order terms the Hessian is much simpler to evaluate, thereby
making the method more efficient.3

3Note that ignoring some of the terms in the
definition of the Hessian influences the tra-
jectory across the error surface, but has no
bearing on the values of the fit parameters to
which the iterative procedure converges.

The main advantage of the Gauss–Newton method is that the minimisation
requires much fewer steps to converge than the previously discussed methods.
The major disadvantage is that the method cannot be relied upon to converge
towards the minimum if the initial trial solution is outside the region where
the error surface is parabolic. As the second-order expansion methods use the
curvature of the error surface the method will not work in regions where the
curvature has the wrong sign.

7.1.6 The Marquardt–Levenberg method

A more robust fitting strategy is one in which the best elements of the expan-
sion and gradient approach are combined. Ideally this fitting routine would use
the method of steepest descent to progress towards the minimum when the trial
solution was far from the optimum values and, as the goodness-of-fit parameter
reduces, the minimisation would switch smoothly to an expansion method as
the minimum was approached and the surface becomes parabolic.

Building on the insight that the gradient descent and Gauss–Newton
methods are complementary, Levenberg suggested the following update rule
(Levenberg 1944):

as+1 = as − (Hs + λ1)−1 gs . (7.18)

The positive constant λ is usually referred to as the damping, or regularisation,
constant. Large values of λ are used when the trial solution is far from the
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minimum; in this case eqn (7.18) reverts to the method of steepest descent,
eqn (7.5). By contrast, when the trial solution approaches the optimum value,
the error surface becomes parabolic, and smaller values of λ are used such that
the quadratic convergence properties of the Newton method are deployed.

Marquardt provided the further insight which remedies one of the major
drawbacks of the gradient-descent method discussed in Section 7.1.3, namely
the zig-zagging along a valley. Marquardt modified the update rule to take into
account the magnitude of the curvature, in such a way that large steps are taken
in directions with small curvatures, and smaller steps in directions with large
curvatures (Marquardt 1963). In the modified update rule the identity matrix
of eqn (7.18) is replaced with the diagonal elements of the Hessian matrix:

as+1 = as − (
Hs + λ diag

[
Hs

])−1 gs . (7.19)

Effectively, the elements of the Hessian matrix are modified according to the
rule

Hj j → Hj j (1 + λ)

Hjk → Hjk ( j �= k) (7.20)

and for large λ the matrix becomes diagonally dominant.
There is a geometrical interpretation of the Marquardt–Levenberg method.

At any given point on the error surface away from the minimum the direction of
the subsequent steps of the minimisation routine for the gradient and expansion
methods are nearly perpendicular. The Marquardt–Levenberg method uses the
parameter λ to vary the angle of the trajectory. Far from the minimum the
trajectory follows the path of steepest descent and smoothly changes to that
of the expansion trajectory as the minimum is approached and the parabolic
approximation becomes increasingly valid. A thorough discussion of how
to choose initial values for λ and how to update λ during the minimisation
procedure can be found in Press et al. (1992).

Although more complex, the Marquardt–Levenberg algorithm is clearly
superior to any of the previously discussed minimisation routines. It is the
minimisation method used in almost all fitting packages and should be used
whenever possible.

Table 7.1 provides a summary of the update formulae used by the five
algorithms discussed above.

Table 7.1 Formulae used to update the next iterate
(as+1 = as + h) for the five optimisation methods
discussed in the text. g is the gradient vector, H is the
Hessian matrix, and J is the Jacobian matrix.

Gradient descent h = −βg

Newton H h = −g

Gauss–Newton 2JTJ h = −g

Levenberg (H + λ1) h = −g

Marquardt–Levenberg
(
H + λ diag

[
H
])

h = −g
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In the final stages of the Marquardt–Levenberg algorithm the matrix used in
the update rule approaches the Hessian. After convergence at the desired level
has been achieved, the update matrix can be evaluated with λ = 0; this process
yields the Hessian evaluated with the best-fit parameters. The elements of this
matrix quantify the curvature of the parabolic error surface in the vicinity of
the minimum, and are used to evaluate the uncertainties in the fit parameters.

7.2 The covariance matrix and uncertainties
in fit parameters

7.2.1 Extracting uncertainties in fit parameters

The uncertainty of a parameter α j is defined as the extremum of the χ2
min + 1

contour along the a j -axis. As we saw in Chapter 6, when the parameter moves
away from its optimal value by an amount equal to �a = a j − ā j = α j , χ2

evolves to χ2
min + 1. We now wish to utilise the matrix methods introduced in

the previous section to calculate the uncertainties in the N fit parameters.
It becomes convenient to remove some of the factors of 2 in the earlier dis-

cussion by defining the curvature matrix, A, which is equal to one-half of the
Hessian matrix.4 The off-diagonal terms are related to the degree of correlation

4The curvature matrix is also an N × N
matrix with components A jk = 1

2
∂χ2

∂a j ∂ak
.

of the uncertainties in the parameters, as they describe the curvature of the χ2

surface along directions which are not collinear with a parameter axis.
The matrix which is the inverse of the curvature matrix is called the covari-

ance, or error matrix, C: [
C

] = [
A
]−1

. (7.21)

The elements of the covariance matrix quantify the statistical errors on the
best-fit parameters arising from the statistical fluctuations of the data. If the
uncertainties in the measurements are normally distributed then we can extract
quantitative information from the error matrix.5 In Chapter 6 we derived5For uncertainties which are not normally

distributed one often uses Monte Carlo tech-
niques to ascertain which is the appropriate
�χ2 contour; see Chapter 9.

the result for the error in one dimension by analysing the �χ2 = 1 contour
(eqn 6.13); the variance (the uncertainty squared) was seen to be inversely
proportional to the curvature of the error surface (eqn 6.12). With N fit
parameters we extend the discussion in Section 6.5.2, such that the contour
on the error surface defined by χ2

min + 1 has tangent planes located at ±
the uncertainties displaced from the optimal values. The matrix equivalent of
locating the �χ2 = 1 contour shown graphically in two dimensions in Fig. 6.8
can be obtained from eqns (7.6) and (7.21); it can be shown (see Press 1992,
Section 15.6) that the uncertainty, α j , in the parameter a j is

α j = √
C j j . (7.22)

This is the most important result for calculating the uncertainties in fit parame-
ters having performed a χ2 minimisation:

The variance in the j th parameter is given by C j j , the j th diagonal element
of the error matrix evaluated with the best-fit paramters.
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In the case where the errors are uncorrelated, the off-diagonal terms of
the curvature matrix are zero and the diagonal elements of the covariance
matrix are simply the inverse of the individual elements of the curvature matrix,
i.e. C j j = (

A j j
)−1. However, in the more general case where the errors are

correlated, the diagonal elements of the error matrix are not equal to the inverse
of the diagonal elements of the curvature matrix, and the matrix inversion of
eqn (7.21) must be performed.

7.2.2 Curvature matrix for a straight-line fit

In the previous section we saw that in the final stages of a Marquardt–
Levenberg fitting procedure the curvature matrix is evaluated at the best-fit
parameters. When fitting a straight line to a data set the two-dimensional error
surface has the same curvature with respect to the slope and intercept for
any values of these two parameters. Hence, in this special case, the curvature
matrix can be calculated quite simply, without even having to perform the least-
squares fit.

For the special case of fitting to y = mx + c the four elements of the
curvature matrix are given by (see Exercise (7.7) for a derivation)

Acc =
∑

i

1

α2
i

, (7.23)

Acm = Amc =
∑

i

xi

α2
i

, (7.24)

Amm =
∑

i

x2
i

α2
i

. (7.25)

The error matrix can thus be found simply by inverting this 2 × 2 matrix.6 6Recall that[
A B
C D

]−1
= 1

AD − BC

[
D −B

−C A

]
.

7.2.3 Scaling the uncertainties

Inherent in the discussion so far about extracting error bars on fit parameters
is that the model is a good fit to the data. There are circumstances where the
value of χ2

min obtained is slightly larger than the ideal one. In this case the
uncertainties in the parameters are often scaled. This topic is discussed further
in Chapter 8.

7.3 Correlations among uncertainties of fit
parameters

7.3.1 Correlation coefficients—off-diagonal elements
of the covariance matrix

In Chapter 4, when developing a calculus-based approximation for the prop-
agation of errors through multi-variable functions, we discarded the off-
diagonal terms, arguing that they were zero for independent variables. If we
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are to calculate a quantity that is a function of more than one of the fit
parameters, our calculation needs to take into account the correlations among
the uncertainties extracted from the fit. The magnitude of these correlations
is contained within the off-diagonal elements of the covariance matrix, C jk ,
which are correlation coefficients of the fit uncertainties α j and αk . Note that
the diagonal components C j j are necessarily positive, while the off-diagonal
elements C jk can be negative.

We illustrate the concept of covariance of two variables as follows. Consider
Z which is a function of two variables A and B, Z = f (A, B). Let there be
N pairs of measurements of A and B, (Ai , Bi ). For the N measurements of
A we can compute the mean, A, and standard deviation σA, and similarly for
B. We can also calculate N values of the function Zi = f (Ai , Bi ). Assuming
that the errors are small we can use a first-order expansion to find the spread
of values of Zi :

Zi ≈ f
(

A, B
) + (

Ai − A
) ∂ Z

∂ A
+ (

Bi − B
) ∂ Z

∂ B
. (7.26)

It is easy to show that the mean value of Z is given by Z = f
(

A, B
)
. We can

calculate the sample variance of the N values of Zi as follows:77 N − 1 appears in the denominator, as it did
in Chapter 2, on account of the fact that we
have one fewer degree of freedom, as the
mean is calculated from the data.

σ 2
Z = 1

N − 1

N∑
i=1

(
Zi − Z

)2
, (7.27)

then from eqn (7.26) we have:

σ 2
Z = 1

N − 1

N∑
i=1

(
∂ Z

∂ A

(
Ai − A

) + ∂ Z

∂ B

(
Bi − B

))2

σ 2
Z =

(
∂ Z

∂ A

)2

σ 2
A +

(
∂ Z

∂ B

)2

σ 2
B + 2

∂ Z

∂ A

∂ Z

∂ B
σAB . (7.28)

In eqn (7.28) σ 2
A and σ 2

B are the variances of A and B, respectively, and we
have also introduced the covariance σAB , defined as

σAB = 1

N − 1

N∑
i=1

(
Ai − A

) (
Bi − B

)
. (7.29)

We can extend the discussion of the covariance between two sets of variables
to the covariance between fit parameters. Recall that the uncertainty in a
parameter we extract from a fit is the standard error, which is the standard
deviation of the mean. Hence we can use eqn (7.29) for the propagation of
uncertainties in correlated variables, with α to be substituted for σ . Note that
the variances and covariance do not necessarily have to have the same units.

It is often easier to use a dimensionless measure of the correlation of two
variables, and to this end we introduce the (N × N ) correlation matrix. The
diagonal elements equal one, and the off-diagonal elements, ρAB , are called
correlation coefficients, and are defined as

ρAB = σAB

σAσB
= CAB√

CAACB B
. (7.30)



7.4 Covariance in error propagation 95

Correlation coefficients are dimensionless quantities constrained to the range
−1 ≤ ρAB ≤ 1. If the two variables are uncorrelated then ρAB ≈ 0; if ρAB

is close to 1 the variables are strongly positively correlated (a positive value
of Ai − A is likely to be associated with a positive value of Bi − B); and
if ρAB is close to −1 the variables are strongly negatively correlated (a
positive value of Ai − A is likely to be associated with a negative value of
Bi − B).

Fig. 7.6 An illustration of the linear cor-
relation between two variables A and B.
In (a) there is strong positive correla-
tion between the variables (ρAB = 0.95);
in (b) there is moderate positive correlation
(ρAB = 0.60); in (c) there is very little cor-
relation (ρAB = −0.02); and in (d) there is
strong negative correlation (ρAB = −0.81).

We illustrate the concepts of covariance and correlations of two variables
A and B graphically in Fig. 7.6 which shows a scatter plot of 30 pairs
of measurements of (Ai , Bi ). In part (a) there is strong positive correlation
between the variables (ρAB = 0.95); in (b) there is moderate positive correla-
tion (ρAB = 0.60); in (c) there is very little correlation (ρAB = −0.02); and in
(d) there is strong negative correlation (ρAB = −0.81).

The off-diagonal element C jk of the covariance matrix contains information
about the correlation between the uncertainties in the parameters a j and ak .
This information can be incorporated into error-propagation calculations, as
we show in the next section.

7.4 Covariance in error propagation

In this section we provide a look-up table for some common functions of
two correlated variables, and we illustrate the concepts introduced in the last
section by an example, including the very important case of the calibration
curve.

Table 7.2 Some rules for the propagation of errors with two corre-
lated variables.

Function, Z (A, B) Expression used to calculate αZ

Z = A ± B α2
Z = α2

A + α2
B ± 2αAB

Z = A × B
(αZ

Z

)2 =
(αA

A

)2 +
(αB

B

)2 + 2
(αAB

AB

)
Z = A

B

(αZ

Z

)2 =
(αA

A

)2 +
(αB

B

)2 − 2
(αAB

AB

)

7.4.1 Worked example 1—a straight-line fit

In Fig. 6.9 in Chapter 6 we saw the χ2 contours for the two parameters, slope
and intercept. As the iso-χ2 ellipses are tilted we expect to find a correlation
between the uncertainties of the fit parameters. Using eqns (7.24)–(7.25) from
Section 7.2.2, we calculate the curvature matrix A to be:

A =
[

0.362 (mV)−2 20.6 Hz(mV)−2

20.6 Hz(mV)−2 1538 (Hz)2(mV)−2

]
.
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By inverting the curvature matrix we obtain the error matrix:

C =
[

11.5 (mV)2 −0.153 (mV)2Hz−1

−0.153 (mV)2Hz−1 0.0027 (mV)2(Hz)−2

]
.

The square roots of the diagonal elements (to one significant figure) are 3 mV
and 0.05 mV/Hz, which are the uncertainties in the intercept and slope, respec-
tively, reported in Table 6.1. The correlation matrix is[

1.00 −0.871
−0.871 1.00

]
.

The negative off-diagonal element reflects the fact that the ellipse is tilted in
such a way that, for a given value of χ2, an increase in gradient is accompanied
by a decrease in intercept. Let us now use these fit parameters to predict the
expected value, V , of the voltage, and its error, at a frequency, f , of 75 Hz.
The quantities are related by the expression V = m f + c, thus V = 2.03 ×
75 − 1 = 151 mV. If we were to ignore the correlation of the uncertainties the
error in V would be calculated using the first entry in Table 4.2 as

α2
V = f 2α2

m + α2
c = f 2C22 + C11, (7.31)

where we have made use of the fact that the variances in the parameters are
equal to the diagonal elements of the error matrix. Inserting numerical values,

we obtain αV =
√

752 × 0.0027 + 11.5 = 5 mV.
Incorporating the correlation into our calculation using the first entry of

Table 7.2 yields a different result:

α2
V = f 2C22 + C11 + 2 f C12. (7.32)

Note the presence of the covariance term in eqn (7.32). Inserting numerical val-

ues, αV =
√

752 × 0.0027 + 11.5 + 2 × 75 × −0.153 = 2 mV. With respect
to the result obtained without the correlation term, this is (a) different, and (b)
reduced—a consequence of the correlation being negative.88Note that the value of the predicted voltage

(151 mV in this case) does not change if the
correlations in the uncertainties are included.

7.4.2 Worked example 2—a four-parameter fit

We saw qualitatively for the data plotted in Fig. 6.11 that the values of the
background and peak centre extracted from the fit were largely uncorrelated,
whereas the values of the background and peak width were strongly correlated.
We can analyse the degree of correlation for the fit more quantitatively by
analysing the terms in the correlation matrix. In this example, the correlation
matrix is ⎡⎢⎢⎣

1.00 −0.64 0.94 −0.25
−0.64 1.00 −0.53 0.0893
0.94 −0.53 1.00 −0.297

−0.25 0.0893 −0.297 1.00

⎤⎥⎥⎦ .

Here, the first parameter is the amplitude, the second the background, the
third the peak width, and the fourth the centre. As expected the correlation of
the background and peak centre is small, ρ24 = 0.089; and the correlation
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of the background and peak width is strong and negative, ρ23 = −0.53. Note
also that as ρ13 = 0.94 there is a strong positive correlation between the
amplitude and peak width—one can trade off an increase in the peak height
and width by reducing the background.

Chapter summary

• Computer codes find the minimum of χ2 by the use of iterative algo-
rithms for the fit parameters.

• In the vicinity of a minimum of χ2, the gradient of χ2 with respect to
the fit parameters is zero.

• Far from the minimum a method based on knowledge of the gradient
of the error surface with respect to the fit parameters (the method of
steepest descent) can be used to head in the direction of the minimum.

• In the vicinity of the minimum, the error surface is a quadratic function
of the changes of parameters from their optimal values, and second-
order (Newton) methods based on quadratic expansion are used.

• The behaviour of χ2 in the vicinity of a minimum is governed by the
second-order derivatives contained in the Hessian matrix, H.

• The Marquardt–Levenberg method combines the best features of gra-
dient descent and expansion, and is ubiquitous in minimisation algo-
rithms.

• The curvature matrix, A, is equal to one-half of the Hessian matrix.
• The error matrix, C, is the inverse of the curvature matrix.
• The variance in the j th parameter is given by C j j , the j th diagonal

element of the error matrix.
• The off-diagonal elements of the error matrix contain information about

the correlation of the uncertainties of the fit parameters.
• The linear correlation coefficient ρi j quantifies the correlation between

the i th and j th parameters.

Exercises

(7.1) Convergence properties of Newton’s method
We investigate the convergence properties of the
Newton–Raphson method to find zeroes of a function
presented in Section 7.1.1 by example. Let us find an
approximation to

√
26 to 10 decimal places. This process

is equivalent to finding the zero crossing of the function
f (x) = x2 − 26. We use the equation

xs+1 = xs − f (xs)

f ′ (xs)
= xs − (xs)

2 − 26

2xs
,

where the derivative of the function, f ′ (x) = 2x , has
been substituted. (a) As

√
25 = 5, we start with the

guess of x1 = 5. Show that the next iterations are:
x2 =5.1, x3 =5.099 019 607 843, x4 =5.099 019 513 593,
and x5 = 5.099 019 513 593. Note how convergence
to better than 10 decimal places is achieved with only
five iterations. (b) What solution do you obtain with an
initial guess of x1 = −5? Explain your answer. (c) What
solution do you obtain with an initial guess of x1 = 0?
Explain your answer.
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(7.2) Newton’s method for finding maxima and minima
Modify the results of Section 7.1.1 to derive the result
for the approximate location, xs+1, of the maximum
or minimum of a function, given the value of the first,
f ′ (xs), and second derivatives, f ′′ (xs), of the function
at the current location, xs :

xs+1 = xs − f ′ (xs)

f ′′ (xs)
.

(7.3) Finding the minimum of a parabola from three points
Consider the variations in χ2 with respect to the parame-
ter ak . Let the step size be �. The grid-search method
proceeds with χ2 reducing as more step sizes are made,
until the first occurrence of an increase in χ2. The last
two values of ak must bracket the value at which χ2

is minimised. Using the last three values it is possible
to calculate the value where the minimum occurs. Let
the three values of the parameter be ãk , ãk + � and
ãk + 2�, and the values of χ2 for those parameters be
χ2

1 , χ2
2 and χ2

3 , respectively. (a) Show that the minimum

χ2 is achieved at a value of

ak = ãk + �

2

(
3χ2

1 −4χ2
2 +χ2

3
χ2

1 −2χ2
2 +χ2

3

)
,

assuming a parabolic dependence of χ2 on ak near the
minimum. (b) Recalling that the uncertainty, αk , in the
parameter ak is ascertained by finding the increase from
the minimum which will increase χ2 by 1, show that

αk = �

√
2

χ2
1 −2χ2

2 +χ2
3
.

(7.4) Error propagation for correlated errors
Assume in this question that the uncertainties in A and
B are correlated. Verify the results in Table 7.2. (i) If
Z = A ± B, show that α2

Z = α2
A + α2

B ± 2αAB .
(ii) If Z = A × B, show that(αZ

Z

)2 = (αA
A

)2 + (αB
B

)2 + 2
(αAB

AB

)
.

(iii) If Z = A
B , show that(αZ

Z

)2 = (αA
A

)2 + (αB
B

)2 − 2
(αAB

AB

)
.

(7.5) Geometry of error calculation in two dimensions
In two dimensions the covariance matrix is written

C =
[

α2
1 ρα1α2

ρα1α2 α2
2

]
.

Show that the inverse of the covariance matrix can be
cast in the following form:

C−1 = 1
1−ρ2

⎡⎣ 1
α2

1
− ρ

α1α2

− ρ
α1α2

1
α2

2

⎤⎦ .

Show that the two eigenvalues λ± of the covariance
matrix are

λ± = 1

2

(
α2

1 + α2
2 ±

√(
α2

1 + α2
2

)2 + 4ρ2α2
1α2

2

)
.

The two orthonormal eigenvectors can be written as(
cos φ

sin φ

)
and

(− sin φ

cos φ

)
, where φ is the angle of the

major axis of the χ2 + 1 contour. Show that the angle φ

is given by

tan 2φ = 2ρα1α2

α2
1 − α2

2

.
(7.6) Terms in the correlation matrix

Show that the diagonal terms of the correlation matrix
are equal to unity.

(7.7) Curvature matrix for a straight-line fit

Recalling that χ2 =
∑

i

(yi − y (xi ))
2

α2
i

, and that after an

experiment has been performed the values of xi , yi and
αi are fixed, show that

(i) 1
2

∂2χ2

∂c2 = ∑
i

1
α2

i
,

(ii) 1
2

∂2χ2

∂m∂c = ∑
i

xi
α2

i
,

(iii) 1
2

∂2χ2

∂m2 = ∑
i

x2
i

α2
i

.

Hence verify the results given for the elements of the
curvature matrix in Section 7.3.

(7.8) Using a calibration curve
A frequently encountered case where the correlation of
the uncertainties must be taken into account is that of
a calibration curve. Consider the following set of mea-
surements from an optical-activity experiment, where the
angle of rotation of a plane-polarized light beam, θ , is
measured as a function of the independent variable, the
concentration, C , of a sucrose solution.

C (g cm−3) 0.025 0.05 0.075 0.100
θ (degrees) 10.7 21.6 32.4 43.1

C ( g cm−3) 0.125 0.150 0.175
θ ( degrees) 53.9 64.9 75.4
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The errors in the angle measurement are all 0.1◦, the
errors in the concentration are negligible. A straight-line
fit to the data yields a gradient of 431.7 ◦ g−1 cm3, and
intercept −0.03◦. Show that the curvature matrix, A, is
given by

A =
⎡⎣ 0.00796

(
(◦)−2

)
−0.0637

(
(◦)−2g cm−3

)
−0.0637

(
(◦)−2g cm−3

)
0.637

(
(g/◦ cm3)2

) ⎤⎦,

and that the error matrix is

C =
⎡⎣ 0.00714

(
(◦)2

)
−0.0571

(
(◦)2g−1cm3

)
−0.0571

(
(◦)2g−1cm3

)
0.571

(
(◦)2g−2 cm6

) ⎤⎦.

The entry for the intercept is in the top left-hand corner,
that for the gradient in the bottom right-hand corner.
Calculate the associated correlation matrix. Use the
entries of the error matrix to answer the following ques-
tions: (i) what are the uncertainties in the best-fit inter-
cept and gradient? (ii) what optical rotation is expected
for a known concentration of C = 0.080 g cm−3, and
what is the uncertainty? and (iii) what is the concentra-
tion given a measured rotation of θ = 70.3◦ and what is
the uncertainty?
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In Chapter 5 we introduced the goodness-of-fit parameter, χ2. We have seen in
the preceding chapters how minimisation of this statistic yields both the best
fit of a model to a data set and the uncertainties in the associated parameters.
Implicit in the discussion so far has been the assumption that the model was
a correct description of the data. We have shown how various methods can be
used to answer the question ‘what is the best fit to my data?’. However, there is
often a far more interesting question: ‘are my data consistent with the proposed
model?’. For instance, ‘is the best fit to the data a straight line?’.

The subject of this chapter is hypothesis testing in the context of error
analysis. We will show how it is possible to use statistical tests to give a
probability that a particular hypothesis is valid. In earlier chapters we presented
techniques for reporting the best estimate of a parameter with its associated
uncertainty. We have shown that this uncertainty is a probabilistic statement of
a confidence limit, based on an appropriate theoretical model. In this chapter
we extend this idea and apply statistical tests to hypotheses or concepts.

8.1 Hypothesis testing

There exist several statistical tests that calculate the probability that the data
may be described by a given model. This is undertaken by defining the
null hypothesis, H0, which is often the assumption that an obtained sample
distribution can be described by a particular parent distribution. When we
extend these arguments to testing the quality of a particular fit we test the
null hypothesis that our data, yi (the sample distribution), is well modelled
by a particular function, y (xi ) (the parent distribution). Statistical techniques
allow the null hypothesis to be tested quantitatively to determine whether the
null hypothesis should be rejected and an alternative hypothesis pursued. The
default in fitting a model to a data set is that at a particular confidence level
or probability there is no evidence that the null hypothesis should be rejected.
We note that the null hypothesis is never accepted as there always remains
a finite probability that an alternative hypothesis represented by a different
parent distribution would be a better description of the data and hence yield a
better fit.

A statistic that is commonly used to test the significance of the null hypothe-
sis in the physical sciences is the χ2 statistic. The sample distribution is tested
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against a particular parent distribution taking into account the experimental
uncertainties. We have already seen in Chapters 6 and 7 that minimising the
χ2 statistic allows the best-fit model parameters and their uncertainties to be
estimated. The resulting minimum value of the χ2 statistic, χ2

min, is a numerical
measure of the discrepancy between the proposed model and the data. As the
χ2 statistic is summed over all the data points it is a quantitative measure
of how well the entire data set can be modelled with the proposed parent
distribution and, as such, can be used as a test of the null hypothesis.

For any given data set we can calculate the probability of obtaining a value of
χ2 equal to χ2

min or higher, given the proposed model.1 When this probability
1In this case we compare the null hypothesis
that the data are well modelled by the func-
tion against the alternative that the statistical
variation in the data set is random.

is sufficiently low (5% and 1% are frequently used) we would reject the
hypothesis at the appropriate percentage level.

8.2 Degrees of freedom

We have seen in preceding chapters that it is possible to give estimates for
various statistical parameters based on different numbers of data points in a
set of measurements. The number of unconstrained variables is known as the
number of degrees of freedom, and represents the number of independent
pieces of information that are used to evaluate an estimate of a parameter.
In general, the degrees of freedom is equal to the number of independent
data points used in the estimate minus the number of parameters used in the
estimation that have already been determined from the data set. When fitting
N independent data points with a function with N parameters the number of
degrees of freedom, ν, is:

ν = N − N . (8.1)

The more data points that are unconstrained, the more robust a statistical
estimate of parameters such as the mean, variance and χ2 become. We can also
consider the degrees of freedom as the number of measurements exceeding the
bare minimum necessary to measure a certain quantity. This is a topic which
can cause much confusion, largely as there are instances where it is not clear
whether one should have many, or few, degrees of freedom. When a complex
situation is being analysed, one often makes simplifying approximations, such
as restricting the motion to one dimension. The motivation is often ‘to reduce
the number of degrees of freedom’, with the implication being that the smaller
the number of degrees of freedom the better. Whereas this can represent the
case for simplifying a physical situation before a mathematical description is
adopted, in the case of data analysis the opposite is the case—the more degrees
of freedom the better.

Consider the case of a measurement of a certain quantity comprising a single
data point. It is obviously possible to fit to the hypothesis that the quantity is
constant, but no real information is gained from this hypothesis. For two data
points, one can ask the more meaningful question ‘are the data consistent with
a constant?’, but it is pointless to ask the question ‘are the data consistent with
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a straight line?’ as it is always possible to find a straight line that goes through
two points. There is very little value in modelling a sample distribution with
N data points with a parent distribution with greater than N parameters. In
data analysis it is more convincing to use as few constraints as possible when
fitting a data set, thus maximising the number of degrees of freedom. We will
discuss in Section 8.7 the concept of what constitutes enough constraints in a
hypothesis test.

Each parameter of the parent distribution estimated from the sample distri-
bution reduces the number of unconstrained data points by 1. In Section 2.2
we saw that the number of data points, N , appears in the denominator of the
definition of the mean (eqn 2.1). However N − 1 appears in the denominator of
the definition of the standard deviation of a sample (Section 2.3.2, eqn 2.2), as
the mean had to be estimated from the same N data points, leaving only N − 1
unconstrained values. Moreover, eqn (5.6) used to evaluate the common uncer-
tainty in linear regression in Section 5.2.1 has the factor N − 2 in the denom-
inator as both the mean and intercept were calculated from the N data points.

8.2.1 Data reduction and the number of degrees
of freedom

We have emphasised throughout this book that reducing a (potentially very
large) number of measurements to a handful of parameters and their errors is
the modus operandi of data analysis. Here we reinforce the concept that having
a large number of degrees of freedom is the ideal case. Consider the following
quiz question: ‘what number comes next in the sequence 1, 2, 4, 6 and 10?’.
The ‘official answer’ is 12. The reasoning is that the series is the sequence of
prime numbers less 1. Consider the following function

f (x) = 5 − 8.5833x + 5.875x2 − 1.4167x3 + 0.125x4. (8.2)

This function has been designed to have the property f (1) = 1, f (2) = 2,
f (3) = 4, etc. For this function f (6) = 21, therefore we could argue with
the quiz setter about the validity of their answer. By choosing a fourth-order
polynomial with five coefficients we can describe the five terms of the sequence
exactly—there are no degrees of freedom. Obviously, it is impossible to do this
in general with a lower-order polynomial. However, we now need to keep all
five coefficients to describe the 5 terms in the sequence—this is very inefficient,
and the opposite of data reduction.

We can also use this example to highlight some of the issues with
interpolation and extrapolation. There is only one fourth-order polynomial,
f (x) in eqn (8.2), which fits the sequence exactly. However there are an
infinite number of fifth-order polynomials which fit the five terms of the
sequence. Two of them are

g (x) = 14 − 29.133 x + 22.75 x2 − 7.7917 x3 + 1.25 x4 − 0.075 x5,

h (x) = 26 − 56.5333 x + 45.25 x2 − 16.2917 x3 + 2.75 x4 − 0.175 x5.
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These functions have the desired property of being equal to the original
sequence for integer arguments, and also g (6) = 12, and h (6) = 0. Therefore
if we extrapolate the function g (x) we see it agrees with the ‘prediction’ of
the quiz question; whereas if we extrapolate h (x) we get a radically different
answer. As seen in Fig. 8.1 both functions are smooth, and pass through the
‘data’, yet they predict very different behaviour outside the range over which
we have data. By contrast, the difference when interpolating is smaller: for
example g (3.5) = 4.84, and h (3.5) = 4.70.

Fig. 8.1 The first six numbers in the
sequence ‘prime number less one’ are shown
as solid circles. A fourth-order fit to the first
five data points is shown, f (x), in addition
to two fifth-order fits, g (x) and h (x). Note
also that although the curves show excellent
agreement over the range of x values for
which the data are defined, they deviate
substantially outside this range, highlighting
the difficulties inherent in extrapolation.

8.3 The χ2 probability distribution function

As the χ2 statistic is a random variable it also has a normalised probability
distribution function, given by (Bevington and Robinson 2003, Chapter 11 and
Squires 2001, Appendix E):

X
(
χ2; ν

)
=

(
χ2

)( ν
2 −1) exp

[−χ2/2
]

2ν/2 � (ν/2)
, (8.3)

where � (x) is the gamma function2 and ν is the number of degrees of freedom.

2The gamma function is related to the fac-
torial function. For positive integers n the
gamma function is equivalent to � (n + 1) =
n!, and for positive half-integers it is defined

as � (n + 1/2) = √
π

(2n)!
n! 22n .

It can be shown using the identities introduced in Chapter 3 for probability
distribution functions that X

(
χ2; ν

)
has an expectation value, or mean, of ν

with a standard deviation of σχ2 = √
2ν. As the χ2 probability distribution

function is asymmetric it is worth noting that the median and mode do not
have the same value as the mean: X

(
χ2; ν

)
has a median of approximately

ν − 2/3 and a mode equal to ν − 2 for ν > 2, as seen in Fig. 8.2(a).3

3The median, m, of a continuous distribution
function, PDF (x), is the value of x for which
the probability of finding a value of x > m is
equal to the probability of finding x < m, i.e.∫ m

−∞
PDF (x) dx =

∫ ∞
m

PDF (x) dx .

The mode of a probability function is the
value of x for which PDF (x) is a maximum.

As with other probability distribution functions, the probability of obtaining
a value of χ2 between χ2

min and ∞ is given by the cumulative probability
function, P

(
χ2

min; ν
)
:

P
(
χ2

min ≤ χ2 ≤ ∞; ν
)

=
∞∫

χ2
min

X
(
χ2; ν

)
dχ2. (8.4)

Equation (8.4) gives the probability that were the sample distribution drawn
from the hypothesised parent distribution, one would obtain a value of χ2 equal
to, or greater than, χ2

min.
Fortunately the cumulative distribution function P

(
χ2

min; ν
)

is accessible
in most spreadsheet and statistical packages and values for specific combina-
tions of χ2 and ν are tabulated in many statistical books. The two functions
X
(
χ2; ν

)
and P

(
χ2

min; ν
)

are plotted in Fig. 8.2.
The forms of both functions are mathematically non-trivial due to the

presence of the gamma function and can be difficult to evaluate as χ2 → 0.
The asymmetry of the χ2 distribution for low ν is clear in Fig. 8.2(a). This
asymmetry is described by the degree of skewness in the function, which
for the χ2 distribution reduces slowly as the number of degrees of freedom
increases. The corresponding cumulative probability distributions for the χ2

distributions in Fig. 8.2(a) are shown in Fig. 8.2(b).
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8.3.1 χ2 for one degree of freedom

For one degree of freedom, eqn (8.3) takes the simpler form (Bevington and
Robinson 2003, p. 197):

X
(
χ2; 1

)
= exp

[−χ2/2
]√(

2πχ2
) . (8.5)

In Chapter 6 we saw that to extract the uncertainty in a parameter one needs to
reduce an N -dimensional error surface to a single one-dimensional slice that
maps the shape of the error surface with respect to one of the parameters in the
vicinity of χ2

min with all remaining parameters re-optimised to minimise χ2.
The variation in χ2 around the minimum, �χ2, must obey the χ2 distribution
for one degree of freedom (eqn 8.5). The cumulative probability distribution
for one degree of freedom can be used to find the probability of obtaining
a value of �χ2 of, say, 1 or higher. In Fig. 8.3 we show the percentage
probability of obtaining a value of χ2 of less than or equal to (χ2

min + �χ2) as
a function of �χ2. The values in Table 6.2 are obtained from the curve shown
in Fig. 8.3. The probability of obtaining a value of �χ2 up to one is 68%.
The other confidence limits for �χ2 in Table 6.2 are shown as solid points in
Fig. 8.3.

X
(χ

2 ; 2
)

P
(χ

2 m
in

; 2
)

χ2
min

Fig. 8.2 (a) The normalised χ2 probability
distribution function for ν = 1, 4, 7 and 10
with (b) the corresponding cumulative prob-
ability functions.

Fig. 8.3 The percentage probability of
obtaining a value of χ2 of ≤ χ2

min + �χ2

as a function of �χ2 for one degree of
freedom. The confidence limits quoted in
Table 6.2 are shown as solid points.

8.4 Using χ2 as a hypothesis test

We can use eqns (8.3) and (8.4) to perform our hypothesis test. We expect
that if the proposed model is in good agreement with the data that χ2

min
will be close to the mean of the χ2 distribution and so χ2

min ≈ ν. For
many degrees of freedom the χ2 distribution becomes more symmetric
and the median, mode and mean become similar and we would expect for
a good match between sample and parent distributions a corresponding
probability P

(
χ2

min ≈ ν; ν
) ≈ 0.5. We learn about the quality of the

agreement between sample and parent by analysing P
(
χ2

min; ν
)
, the

probability of obtaining the observed value, or higher, of χ2
min for a given

number of degrees of freedom.
If the value of χ2

min is significantly greater than ν the probability,
P
(
χ2

min > ν; ν
)
, is small, as seen in Fig. 8.2(b). Under such circumstances,

there are discrepancies between the model and the data which are unlikely to
be explained by random statistical fluctuations in the sample distribution. This
could arise from either (i) an incorrect null hypothesis, or (ii) an incorrect
evaluation or assumption about the uncertainties. Conversely, if the value
of χ2

min is less than ν the cumulative probability function, P
(
χ2

min; ν
)
,

becomes greater than 0.5 and tends towards unity. This is not an indication
of an improved fit, but rather suggests that the standard errors used in the
determination of the χ2 statistic have been overestimated, resulting in an
unrealistically small value of χ2.

We now turn to the question of when to reject the hypothesis on the grounds
of the value of χ2

min being too large to attribute to statistical fluctuations in
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the data set. Obviously, there is not one critical value of P
(
χ2

min; ν
)

which
determines whether the hypothesis is rejected; in this treatment we will inves-
tigate the evolution of P

(
χ2

min; ν
)

as a function of the results being two or
three standard deviations from the mean. In statistics texts (see, e.g. Rees
1987) the 5% level of significance is often chosen as the critical value; i.e.
if P

(
χ2; ν

) ≤ 0.05 the hypothesis is said ‘to be rejected at the 5% level’. As
with the sampling of any probability distribution function the most probable
value returned will be the expectation value or mean. However, from the
discussion in Chapters 2 and 3 we would not be surprised to find results that
are within two standard deviations of the mean. For a test of a particular null
hypothesis, we would therefore expect to obtain a value of χ2

min ≈ ν but would
not be surprised to find χ2

min within two standard deviations of the mean, i.e.
in the range ν − 2

√
2ν ≤ χ2

min ≤ ν + 2
√

2ν. The probability of obtaining a
value of χ2

min of ν + 2
√

2ν or higher is approximately 4 × 10−2. Due to the
asymmetry of the χ2 distribution this probability has a very weak dependence
on ν; for five degrees of freedom, the probability derived from eqn (8.4)
is P (11.3; 5) = 0.045; for ν = 20, P (32.6; 20) = 0.037 and for ν = 100,
P (128; 100) = 0.029. The probability of finding a value of χ2

min greater than
three standard deviations from the mean, i.e. χ2

min > ν + 3
√

2ν, is an order of
magnitude smaller and is approximately 5 × 10−3.

Fig. 8.4 Cumulative probability distribution
functions for 20 degrees of freedom. Part (a)
shows the case of χ2

min equal to the expected
value (ν), the shaded area represents the
probability of obtaining a value of χ2 equal
to ν or higher and is 46% of the area under the
curve. The cases for χ2

min = ν + σ , ν + 2σ

and ν + 3σ are shown in (b), (c) and (d)
respectively, with corresponding probabili-
ties of 16%, 4% and 0.7%.

We illustrate these ideas in Fig. 8.4 where the cumulative probability distrib-
ution for χ2 with ν = 20 is shown. In Fig. 8.4(a) the distribution is shown with
the mean marked. The probability of obtaining a value of χ2

min of 20 or higher
with ν = 20 is P (20; 20) = 0.46 which is slightly less than 1/2. In subsequent
plots the probabilities of obtaining a value of χ2

min of ν+ σ , ν+ 2σ and ν+ 3σ

or higher are shown. The probabilities for these points are P (26.3; 20) = 0.16,
P (32.6; 20) = 0.04 and P (39.0; 20) = 0.007 respectively.

Although the probability of finding a value of χ2
min greater than ν + 3σ is

rather low, P (ν+ 3σ ; ν) ≈ 10−3, genuinely incorrect models will give signif-
icantly lower probabilities, say P

(
χ2

min; ν
) ≈ 10−18. It is for the experimenter

to decide at which threshold the null hypothesis is rejected. Although fits can
be accepted at the P

(
χ2

min; ν
) ≈ 10−3 level, it is not advisable to do this

as a matter of course. It would be a better strategy to find the origin of the
discrepancy between the model and data.

• For a reasonable fit, the value of P
(
χ2

min; ν
) ≈ 0.5.

• If P
(
χ2

min; ν
) → 1 check your calculations for the uncertainties in the

measurements, αi .
• The null hypothesis is generally not rejected if the value

of χ2
min is within ±2σ of the mean, ν, i.e. in the range

ν − 2
√

2ν ≤ χ2
min ≤ ν + 2

√
2ν.

• The null hypothesis is questioned if P
(
χ2

min; ν
) ≈ 10−3 or

P
(
χ2

min; ν
)

> 0.5.
• The null hypothesis is rejected if P

(
χ2

min; ν
)

< 10−4.
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8.4.1 The reduced χ2 statistic

In order to ascertain whether a particular null hypothesis should be rejected at
a particular confidence level, the probabilities of obtaining the observed value
of χ2

min or higher given the number of degrees of freedom must be calculated
using eqn (8.4). However, we can obtain a quick indication as to whether the
null hypothesis should be rejected by considering the so-called reduced chi-
squared statistic, χ2

ν , which is simply the value of χ2
min divided by the number

of degrees of freedom:

χ2
ν = χ2

min

ν
. (8.6)

Fig. 8.5 χ2
ν calculated at ν + σ (dotted),

ν + 2σ (dashed), and ν + 3σ (solid) and
plotted as a function of the number of degrees
of freedom. For 100 degrees of freedom the
limit for not rejecting the null hypothesis is
for a value of χ2

ν of 1.4, whereas it is 2.3 for
10 degrees of freedom.

Table 8.1 Example values of the
largest acceptable values of χ2

ν

obtained from the
(
χ2

ν + 3σ
)

confidence level for different
degrees of freedom, ν.

ν
(
χ2

ν + 3σ
)

5 2.9
10 2.3
20 1.9
30 1.8
50 1.6

100 1.4
500 1.2

A good match between the sample and parent distribution occurs when χ2
ν ≈ 1.

We can understand why the null hypothesis is not rejected if χ2
ν ≈ 1 by con-

sidering that for good agreement between the sample and parent distribution
each point will differ from its expected value, i.e. the mean, by typically
the standard deviation of the mean (standard error). Thus each term in the
summation of the χ2 statistic should be of order one, with the result that
χ2

min ≈ N . Typically, as the number of degrees of freedom is similar to the
number of data points, χ2

ν is thus expected to be unity. If the value of χ2
ν is

much larger than one, it is likely that the null hypothesis should be rejected.
A very small value of χ2

ν is also unlikely—either the error bars have been
overestimated, which reduces the value of χ2, or the observed and expected
values are unrealistically close. Again it is for the experimenter to decide at
what confidence limit the null hypothesis should be rejected in terms of the
reduced chi-squared statistic, χ2

ν . In Section 8.4 we discussed how one would
not be surprised if the observed value of χ2

min was within 2σ of the mean for a
good fit, and that the null hypothesis should only be questioned if the value of
χ2

min was larger than, say, 3σ from the mean. As the standard deviation of the
χ2 distribution depends on ν, the confidence limits for χ2

ν also depend on ν. In
Fig. 8.5 the values of χ2

ν calculated at ν + σ , ν + 2σ , and ν + 3σ are plotted
as a function of the number of degrees of freedom. Recall that for a Gaussian
distribution these intervals correspond to the 68%, 95% and 99.7% confidence
limits. The 3σ confidence limit of χ2

ν is tabulated for several values of ν in
Table 8.1.

• For a reasonable fit the value of χ2
ν ≈ 1.

• If χ2
ν � 1 check your calculations for the uncertainties in the measure-

ments, αi .
• The null hypothesis is questioned if χ2

ν > 2 for ν ≈ 10.
• The null hypothesis is questioned if χ2

ν > 1.5 if ν is in the approximate
range 50 ≤ ν ≤ 100.

Although easier to calculate, χ2
ν does not contain as much information as

using χ2
min and ν to calculate P

(
χ2

min; ν
)
; see Exercise (8.2).
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8.4.2 Testing the null hypothesis—a summary

The null hypothesis is that the sample distribution is well modelled by a
proposed parent distribution and that any scatter between the two distributions
is a result of random statistical variations in the sample. A χ2 test of this
hypothesis is performed by first finding the value of χ2

min and then determining
the number of degrees of freedom. We have seen in the previous sections
that there are two numbers which can be used to test the validity of the null
hypothesis:

(1) the reduced chi-squared statistic, χ2
ν ;

(2) the probability of obtaining a value of χ2
min equal to the fit value or

higher, given ν, P(χ2
min; ν).

The χ2
ν statistic is significantly easier to calculate and can be used to reject

the null hypothesis if χ2
ν > 3. Ambiguity arises in using the χ2

ν statistic to
reject the null hypothesis for values in the range 1 ≤ χ2

ν ≤ 3 due to a strong
dependence of the χ2

ν confidence levels on ν as seen in Table 8.1. This
ambiguity can be resolved by calculating (using appropriate software or look-
up tables) the probability of obtaining the observed value of χ2

min or higher
for the number of degrees of freedom, P(χ2

min; ν). This probability has a
much weaker dependence on ν and the null hypothesis should be rejected if
P(χ2

min; ν) < 10−4.
By rejecting the null hypothesis we are stating that the discrepancies

between the data and proposed model are very unlikely to be due to ran-
dom statistical fluctuations; there must be a genuine systematic reason for
the disagreement. A good experimentalist would then try different models
with insight gained from further analysis of, for example, the normalised
residuals.

8.5 Testing the quality of a fit using χ2

The χ2 statistic can be used as a test of the quality of a fit. In this section we
discuss by example (a) how to answer the question ‘are the data well described
by the theoretical model?’, and (b) how to answer the related question ‘which
model best describes the data?’.

The first step in conducting a χ2 test is to determine the best-fit model
function. The procedure to find χ2

min depends on the functional form of the
theoretical model. We saw in Chapter 6 that for a simple straight line the
best-fit line is easily determined analytically.4 If the theoretical model is an

4For a straight-line fit the procedure to obtain
χ2

min is as follows:

• obtain the best-fit parameters and their
uncertainties using eqns (6.3)–(6.6);

• for each data point, yi , calculate the

normalised residual, Ri = yi −y(xi )
αi

,
using the best-fit function, y(xi );

• calculate χ2
min by summing the square

of the normalised residuals for the data
set. arbitrary function we highlighted in Chapters 6 and 7 the numerical techniques

for minimising χ2.
The null hypothesis is that the model is an appropriate description of the

data. If the null hypothesis is not rejected the model is said to be a ‘good fit’
to the data. If the values of either χ2

ν or P(χ2
min; ν) exceed the limits discussed

above, the null hypothesis is rejected and the model is said to be a ‘poor fit’
to the data. While it is clear what the extremes of a good and poor fit are, the
boundary between them is much more subjective. Our advice is to quote both
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the value of χ2
min , the number of degrees of freedom, ν, and P(χ2

min; ν) which
allows the reader to judge the quality of the fit.

We now show through some worked examples how the χ2-test can be
applied to testing the quality of a fit and testing different models.

8.5.1 Worked example 1—testing the quality of a fit

Fig. 8.6 The count rate (the number of
decays per second) as a function of time for
the decay of a 137Ba isotope. The weighted
best-fit curve is shown as a solid line.

In Fig. 8.6 we show the data obtained by monitoring the radioactive decay
from an active 137Ba isotope. The count rate is expected to decay exponentially
to a constant background level. A suitable model to fit the data will contain
three parameters; the initial activity, the half-life of the decay and the back-
ground level. Using the procedures outlined in Chapter 6, these parameters
and their associated errors were obtained by minimising χ2 to obtain a value
of χ2

min = 53.5. There are 62 data points and as there are three fit parameters
the number of degrees of freedom is ν = 59. The reduced χ2 value is therefore
χ2

ν = 0.9. As this is less than 1.5 (Table 8.1), and not significantly less than
1, we do not reject the null hypothesis. We can further quantify the quality
of fit by using eqn (8.4) to determine the probability of obtaining the value
χ2

min = 53.5, or larger, for 59 degrees of freedom. Using suitable look-up tables
we find P(53.5; 59) = 0.68. As this probability is close to 0.5 there is, again,
no reason to reject the null hypothesis and we can accept the fitted parameters
of the hypothesised linear function and their uncertainties with a high degree of
confidence. In this example we obtain a value for the half-life of the radioactive
isotope5 of t1/2 = 153 ± 4 seconds from the best-fit curve.

5The half-life of 137Ba is 153 s.

8.5.2 Worked example 2—testing different models
to a data set

As χ2
min is a numerical measure of the discrepancy between a proposed model

and the data, weighted by the uncertainty in the data, a χ2 test can be used to
distinguish between the validity of different models. Consider the well-known
case for the period of a pendulum. The conventional derivation of the equation
of motion for a pendulum assumes that the initial angular displacement is
small. If the small-angle approximation is no longer valid, then the period,
T , of a pendulum depends not only on its length, L , and the acceleration due
to gravity, g, but is also a function of the initial angular displacement, θmax.
It can be shown (Kleppner and Kolenkow 1978, p. 276) that including the
lowest-order correction yields the result:

T = 2π

√
L

g

[
1 + 1

16
(θmax)

2
]

. (8.7)

In Fig. 8.7 we present experimental data of the period against the initial angular
displacement and fit different models to the data.



110 Hypothesis testing

Fig. 8.7 Experimental data (filled circles) for
the dependence of the period of a pendulum
on the initial angular displacement. In (a) the
best-fit constant period is shown as a dashed
line, and a model comprising a constant with
a quadratic correction shown as the solid line.
In (b) a straight-line fit is made to the data.

In Fig. 8.7(a) we fit the data to two competing models motivated by physical
insights. We compare the simple case where the period is assumed to have
no angular dependence—i.e. the experimental data are fit to a simple con-
stant, T0 = 2π

√
L/g, with a more rigorous approach where the data are fit

to eqn (8.7) with a coefficient of the quadratic correction, α, a free parameter:
T = T0[1 + α θ2

max]. In Fig. 8.7(b) we test an alternative hypothesis that the
angular dependence of the period follows a linear dependence by fitting the
data to T = T0[1 + β θmax]. Visually the experimental data clearly show an
angular dependence and the hypothesis that the period is independent of angu-
lar amplitude should be rejected—the best-fit constant period does not agree
with any of the six data points within their error bars. To quantify why this null
hypothesis should be rejected and whether the other models provide a good fit
to the data requires a χ2 test to be undertaken. The results are encapsulated in
Table 8.2.

Table 8.2 Three different models are used for the dependence of the period of oscilla-
tion of a pendulum on the initial angular displacement.

Model Degrees of freedom χ2
min χ2

ν P(χ2
min; ν)

T = T0 5 107.2 21.4 1.6 × 10−21

T = T0

[
1 + α θ2

max

]
4 3.39 0.9 0.49

T = T0 [1 + β θmax] 4 4.39 1.1 0.36

The model of a period independent of amplitude can clearly be rejected.
With five degrees of freedom a value of χ2

min = 107.2 yields a reduced χ2
ν of

21.4, and a probability of obtaining a minimum χ2 of this magnitude or larger
of 1 × 10−21. The model of a quadratic correction to the constant provides a
good fit to the data, with values of χ2

ν and P(χ2
min; ν) which are consistent

with the model being a valid description of the data. A model with a linear
correction also provides a good fit to the data. Based on a χ2 test alone we
cannot distinguish between the quality of the fit for the linear and quadratic
models. However, as there is a theoretical model which predicts a quadratic
contribution we prefer to accept this model, but note that for this data set we
still do not reject the model of a linear correction.66Further more precise experimental data

would need to be obtained to differentiate
between the two models. More data would
enable a more robust hypothesis test, and the
precision of the experimental data enables
the subtleties in the shape of the two model
functions to be compared with the data.

8.5.3 What constitutes a good fit?

Over the last four chapters we have discussed many criteria for deciding
whether a theoretical model is an appropriate description of a data set—i.e.
‘is the fit good?’. At the start of Chapter 6 we introduced the three questions
one should ask when fitting experimental data to a theory. The first, and most
important of these, is to question the quality of the fit as this is a prerequisite
for the other two questions to be relevant. Often it is clear from a simple visual
inspection whether a fit is good or poor, but where this is not the case a more
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quantitative analysis is required. We provide here a summary of possible strate-
gies to follow in attempting to quantify the ‘quality of the fit’. For a good fit

• Two-thirds of the data points should be within one standard error of the
theoretical model.

• χ2
ν is ≈ 1.

• P
(
χ2

min; ν
) ≈ 0.5.

• A visual inspection of the residuals shows no structure.
• A test of the autocorrelation of the normalised residuals yields D ≈ 2.
• The histogram of the normalised residuals should be Gaussian, centred

on zero, with a standard deviation of 1.

8.6 Testing distributions using χ2

We have shown how to use the minimisation of the χ2 statistic to find the best-
fit parameters, and use the probability distribution function of χ2 to perform
a hypothesis test. In this section, we shall extend the use of the χ2 test and
demonstrate how to perform a null hypothesis test of a distribution. As before,
the null hypothesis is that there is no significant difference between the sample
and parent populations—any observed difference is only due to statistical
fluctuations associated with the random sampling of the parent distribution.

Suppose that the sample distribution is composed of N measurements of
a variable xi . The first step in testing a sample distribution against a parent
distribution is to create a histogram of the sample data. The occurrence per
bin in the histogram, Oi , is a function of (1) the sample size and (2) the bin-
width. We would expect that if we were to repeat the experiment many times,
the number of occurrences per bin would fluctuate about a mean value with
a particular standard deviation. As each of these repeat measurements gives a
count per bin which is a random process we would expect from Section 3.4
that the appropriate probability distribution function is a Poisson with a mean
occurrence Oi , and standard deviation

√
Oi .

The second step is to create the histogram of the expected results. There are
two methods for calculating the expected number, Ei , depending on whether
the proposed distribution is discrete or continuous. For a discrete distribution
Ei is generated by summing the expected occurrences for the range of x-values
of the i th bin, and multiplying by N , the total number of measurements. For a
continuous probability distribution function PDF(x), Ei is calculated by inte-
grating PDF(x) over the range of x-values of the i th bin, and multiplying by N .

In performing a χ2 test we compare the observed occurrences, Oi , with
the expected occurrences, Ei , generated from the proposed parent distribution.
The appropriate form for calculating χ2 is given by eqn (6.2). For the null
hypothesis not to be rejected we would expect that Oi − Ei would be small
and of the order of

√
Ei . Sequential bins are combined if Ei < 5 to avoid the

χ2 test being skewed by the asymmetry in the Poisson distribution.
Once the value of χ2 has been determined the null hypothesis can be tested

by considering the probability P
(
χ2; ν

)
or χ2

ν .
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The procedure to perform a χ2 test for a distribution is as follows:

• Construct a histogram of the sample distribution, Oi .
• For the same intervals construct a histogram of the expected occur-

rences, Ei .
• Combine sequential bins until Ei > 5 for all bins.

• Calculate χ2 using χ2 = ∑
i

(Oi − Ei )
2

Ei
.

• A good fit will have: χ2
ν ≈ 1 and P

(
χ2; ν

) ≈ 0.5.
• A poor fit will have: χ2

ν << 1 or χ2
ν > 3, and P

(
χ2; ν

) → 1 or
P
(
χ2; ν

)
< 10−4.

In the following section, we give examples of how to test a sample distribu-
tion against parent distributions which are (a) discrete and (b) continuous.

8.6.1 Worked example 3—testing a discrete distribution

Consider the data shown in Fig. 8.8 which gives the results of a radioactive
decay experiment. From the discussions in Chapter 3 we expect that this
sample distribution is drawn from a Poisson distribution. Figure 8.8(a) shows
the histogram obtained after taking 58 measurements of one second duration.
Our best estimate of the mean of the parent distribution is the mean number of
counts determined from the sample distribution—in this case N̄ = 7.55. The
expected values for a Poisson distribution with this mean are superimposed on
the histogram in Fig. 8.8(a). To calculate the expected values, the probabilities
determined from the Poisson distribution function are scaled by the total
number of samples, N ; Ei = P

(
Ni , N

) × N .
Visually it appears that the sample distribution is in agreement with a

Poisson distribution but for a quantitative analysis we calculate χ2; these
calculations are carried out explicitly in Table 8.3.

Fig. 8.8 Comparing experimental radioac-
tive decay events with a Poisson distribution.
In (a) a histogram of the observed occurrence
of counts is plotted (bars) and compared with
a Poisson distribution (points) and expected
fluctuations. Part (b) shows a re-binned his-
togram with bin-widths chosen such that the
number of expected occurrences is always
greater than 5. Note that in the re-binned
histogram six out of eight observed occur-
rences fall within the expected range taking
into account the Poisson noise.

Due to the low number of expected occurrences in bins 0–4 and 11–17, these
have been combined to form eight super-bins which are plotted in Fig. 8.8 (b).
A visual inspection of the re-binned histogram reveals that for six of the eight
bins the observed and expected occurrences agree within the expected Poisson
fluctuations,

√
Ei . This is consistent with a good fit, but a more quantitative

analysis of the null hypothesis requires χ2 to be calculated. We have applied
two constraints when comparing the sample and parent distributions—namely
the means of the two distributions are the same, and the total number of
measurements is also the same. The number of degrees of freedom in this
example is therefore ν = 8 − 2 = 6. We determine χ2 = 6.80 in Table 8.3
and calculate both the reduced chi-squared, χ2

ν = 1.13, and the probability
P(6.80; 6) = 0.34. As χ2

ν is close to 1 and the probability is close to 0.5, there
is no reason why the null hypothesis should be rejected and we conclude that
the sample distribution was likely to have been drawn from a Poisson parent
distribution.
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Table 8.3 Comparing experimental radioactive decays with a Poisson model.
The first column is the number of counts, the second is the occurrence of each
count. Column three is the Poisson probability for obtaining a given number of
counts using the mean count of the data. The fourth column gives the expected
number of occurrences, and χ2 is calculated in the fifth column.

Number of counts Oi Prob. (%) Ei
(Oi − Ei )

2

Ei

0 0
⎫⎪⎪⎪⎬⎪⎪⎪⎭ 7

0.05 0.03
⎫⎪⎪⎪⎬⎪⎪⎪⎭ 7.44

1 0 0.40 0.23
2 0 1.50 0.87 0.026
3 1 3.77 2.19
4 6 7.12 4.13
5 5 10.75 6.23 0.24
6 8 13.53 7.85 0.003
7 13 14.60 8.47 2.43
8 10 13.78 7.99 0.51
9 2 11.56 6.71 3.30
10 4 8.73 5.06 0.22
11 4

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
9

5.99 3.48
⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

8.25

12 2 3.77 2.19
13 2 2.19 1.27
14 0 1.18 0.69 0.07
15 1 0.60 0.35
16 0 0.28 0.16
> 17 0 0.21 0.12∑

58
∑

100
∑

58 χ2 = ∑
6.80

8.6.2 Worked example 4—testing a continuous
distribution

Fig. 8.9 A histogram of the means of 106
UK National Lottery draws. In each draw six
balls are selected from the integers 1–49 and
we have calculated the average value of the
balls drawn per event. The continuous line
is a Gaussian constrained to have the same
mean and standard deviation as the sample
data and is scaled by the total number of
events.

In the discussion of the central limit theorem in Chapter 3 the key idea is that,
independent of the form of the distribution function of individual measure-
ments, the distribution of the means of, say, five measurements is Gaussian. As
an example we showed the distribution of the average of the six balls drawn in
the UK lottery for 106 independent events. A visual inspection of Fig. 3.9(b)
indicates that the histogram of the means resembles a Gaussian. Here we pro-
vide a qualitative analysis of this agreement through a χ2 test. The histogram of
the means is reproduced in Fig. 8.9. The proposed continuous Gaussian model
with the same mean (x̄ = 25.4) and standard deviation (σ = 5.8) as the sample
and scaled by the total number of sample occurrences, N = 106, is shown by
the solid line in Fig. 8.9. To compare the histogram of the observed means with
the continuous function requires the Gaussian to be discretised to the same bin-
width as the histogram of the observed occurrences. The expected counts per
bin were calculated using eqn (3.9) to determine the probability and multiply-
ing by N . In Table 8.4 the data have been re-binned to ensure that Ei is always
larger than 5 in any bin resulting in a new sample of 16 measurements. As
there are three constraints (the parent and sample distributions have the same
number of measurements, and share a common mean and standard deviation)
the number of degrees of freedom is therefore ν = 16 − 3 = 13. We determine
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that χ2 = 16.32 in Table 8.4 and calculate both the reduced chi-squared,
χ2

ν = 1.26, and the probability P (16.32; 13) = 0.23. As χ2
ν is close to 1 and

the probability is close to 0.5, there is no reason why the null hypothesis should
be rejected and we conclude that the distribution of means is well modelled by
a Gaussian distribution in agreement with the central limit theorem.

Table 8.4 Comparing the distribu-
tion of the means of the 106
UK National Lottery draws with a
Gaussian distribution. The first col-
umn is the mean value, the second
is the occurrence of each mean. Col-
umn three gives the expected num-
ber of occurrences using a Gaussian
model with the same mean and stan-
dard deviation as the sample data, and
χ2 is calculated in the final column.
Bin-widths have been chosen such
that Ei is greater than 5 in each bin.
Note that all the entries in the last
column are of order 1.

Bin Oi Ei
(Oi − Ei )

2

Ei

<16 4 6.3 0.85
17–18 7 5.6 0.33
19–20 7 8.5 0.28
21 8 5.4 1.25
22 8 6.1 0.60
23 5 6.7 0.41
24 4 7.1 1.33
25 5 7.3 0.72
26 13 7.3 4.48
27 6 7.1 0.16
28 2 6.7 3.26
29 7 6.1 0.14
30 8 5.4 1.25
31–32 11 8.5 0.71
33–34 4 5.6 0.47
>35 7 6.3 0.08∑

106 106 16.32

One can adopt this methodology to provide a quantitative test as to whether
the histogram of the normalised residuals obtained in a fit is Gaussian as
expected.

8.7 Occam’s razor

It should be obvious that by adding more parameters to our model, we can get a
better fit to the experimental data points. As mentioned above in the discussion
of the number of degrees of freedom, a fit is much more convincing if there are
far fewer constraints than data points. When we have fewer constraints than
data points it is useful to consider whether the model would be better with
more (or fewer) parameters. We will use a line of argument based on a tool
designated ‘Occam’s razor’ to ascertain whether another parameter is justified
in the theoretical model.7

7Named after William of Occam, a four-
teenth century Franciscan friar, who postu-
lated that with two competing theories which
make the same prediction, the simpler one is
better.

Consider the data shown in Fig. 8.10. In part (a) a polynomial fit is hypoth-
esised as a theoretical model, and the value of χ2

min is plotted as a function
of the number of parameters included in Fig. 8.10(b). We see that the quality
of the fit improves drastically up until the fifth-order term is included. For
higher order polynomials there is only a modest improvement in the quality
of the fit as more terms are added, reflected in the slight decrease of χ2

min. As
the quality of the fit hardly improves after the fifth-order term is included, we
apply Occam’s razor to discard higher order corrections, and prefer to accept
the simplest model which accounts quantitatively for the trends in the data.
It is also possible to apply a more quantitative test of whether an additional
term should be kept, in terms of an F-test; see Bevington and Robinson (2003,
Section 11.4) for further details.

Fig. 8.10 Different polynomial fits to a data
set with 41 points. Low-order polynomial fits
such as the second-order fit shown in (a) sys-
tematically fail to account for the trends in
the data set. Higher order polynomials fit the
data set better. The evolution in the quality
of fit, χ2

ν , is shown as a function of polyno-
mial order in (b). Fits with polynomial orders
greater than five do not significantly improve
the quality of the fit.
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8.8 Student’s t-distribution

In Chapter 3 we discussed how to compare experimental results with an
accepted value. The analysis centred on the dimensionless quantity

t = (x̄ − μ)

α
=

√
N (x̄ − μ)

σN−1
, (8.8)

where x̄ is the best estimate based on N measurements with sample standard
deviation of σN−1, standard error α, and accepted value μ. Calculations of the
confidence limits were conducted with this parameter; for example we showed
that 99% of data points for a Gaussian distribution should have |t | < 2.58, 95%
have |t | < 1.96 and 68% have |t | < 1. However, in practice we do not know the
standard deviation of the parent distribution and we can only estimate it from
the sample distribution. For samples of finite size the confidence limit becomes
a function both of the tolerance level chosen and the number of degrees of
freedom, ν. The factors which replace the entries in Table 3.1 are known as the
Student t values, and are derived from a well-known distribution.8 When the 8W. S. Gosset published the distribution

using the pseudonym ‘Student’ in 1906 while
an employee of the Guinness brewery.

number of degrees of freedom is large, the distribution approximates well to a
Gaussian; but for fewer degrees of freedom the Student t distribution is wider
than a Gaussian. Most spreadsheets and analysis packages can calculate the
relevant factor from the desired confidence limit and the number of degrees of
freedom. The evolution of the factor for the 68%, 95% and 99% confidence
limits is shown in Fig. 8.11. The difference between the confidence limits
derived from the Student and Gaussian distributions depends on both the
confidence limit of interest and the number of degrees of freedom. For the
68% confidence limit the difference is only 5% for 10 degrees of freedom and
10% for five degrees of freedom. As we seldom quote the uncertainties to more
than one significant figure we do not have to worry about this effect unless the
number of degrees of freedom is very small. The Student probability distrib-
ution function has higher cummulative probabilities for large deviations than
a Gaussian. Thus, the importance of the t values increases as the confidence
level tends to 100%.

Fig. 8.11 The variation of the t statistic as
function of the number of degrees of freedom
for the 68%, 95% and 99% confidence limits.
As ν → ∞, the values tend to those obtained
using a Gaussian distribution (1, 1.96 and
2.58 respectively). For very few degrees of
freedom the confidence limits have to be
broadened significantly.

8.9 Scaling uncertainties

We have emphasised throughout this book that it is vital to ascertain the
magnitude of the uncertainty in the measurements, αi , and have shown how it is
possible to extract uncertainties in parameters from an analysis of the goodness
of fit. It is also possible to turn this process on its head, and learn something
about the uncertainties from the fit. There are two separate procedures which
we discuss here: (i) estimating the common uncertainty on the data points,
and (ii) scaling the magnitude of the uncertainties in fit parameters.

Both processes hinge on the concept that a ‘good fit’ will have a χ2
min ≈ ν.

Recalling the definition of the standard error, αi , as the standard deviation of
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the mean, one would expect the statistical variation between the theory and the
data, yi − y(xi ), to be of the order of the standard error. One can estimate the
common uncertainty, αCU, in the measurements by setting χ2

ν = 1. If the data
set is homoscedastic one can use eqn (6.1), to give

α2
CU = 1

ν

∑
(yi − y(xi ))

2. (8.9)

In most statistical regression packages the common error is returned. Note that
one cannot use αCU to give any insight into the quality of the fit.9

9Health warning Do not use the data and
fit parameters to estimate the uncertainty, and
then use the common uncertainty to calculate
χ2 and hence test the quality of fit—this is a
circular argument.

It is also possible to use the value of χ2
min to scale the errors in the

fit parameters when one has complete confidence in the theoretical model
being used to describe the experimental data. Let S be the scale factor
defined as

S =
√

χ2
min

ν
=

√
χ2

ν . (8.10)

One can rewrite the discussion from Section 8.4.1 in terms of S. Thus, if the
results of a χ2 minimisation yield a value of S that is very large, the model
should be rejected and the experimenter should try and ascertain the reason
behind the large discrepancy between theory and experiment. Similarly the
parameters should be rejected if S is very small as it is likely that the error
bars have been overestimated. If S is similar to 1 the uncertainties in the fitted
parameters can be scaled by S. The reasoning is (see page 16 of the article by
the Particle Data Group, Amsler et al. 2008) that the deviation of S from 1
is a consequence of the uncertainties in the experimental data being estimated
incorrectly. Not knowing which particular points give rise to the unexpected
value of S, it is assumed that all the uncertainties are incorrectly scaled by a
common factor of S. By scaling the uncertainties in the input data by S, the
uncertainties in the fit parameters also change by S giving a modified value
of χ2

ν = 1 (this is equivalent to scaling every element of the error matrix by
S). Obviously there are many assumptions inherent in this scaling procedure,
and the experimenter has to ask whether they are reasonable and justified. If
a scaling factor is applied to the uncertainties, this should be clearly stated in
any publication based on these results.10

10Health warning Note that many fitting
packages automatically scale the fit parame-
ters, often without making it clear how the
data have been manipulated. Many packages
will blindly apply the scaling even if χ2

ν � 1
due to incorrect error analysis, leading to
completely unrealistic estimates of the uncer-
tainties.

8.10 Summary of fitting experimental data
to a theoretical model

In the last four chapters we have discussed extensively various issues
which arise when fitting experimental data to a theoretical model. Here we
summarise the procedure and highlight the questions one should ask after
performing such a fit.



8.10 Summary of fitting experimental data to a theoretical model 117

• Perform the fit and find optimal values of the parameters by minimising
χ2.

• Based on the value of χ2
min and ν decide whether the fit is reasonable—

i.e. questions such as ‘are my data consistent with a Gaussian distribu-
tion?’ should be answered at this stage.

• If there are competing theoretical models use χ2
min and ν to decide

which model is most appropriate.
• If the quality of the fit is poor either (a) consider a different theoretical

model, or if the theoretical model is known to be valid for the conditions
of the experiment, (b) try to identify defects in the experiment or
analysis.

• For a good fit the values of the parameters which minimised χ2 are used
to answer the question ‘what are the best-fit parameters?’.

• Calculate the error matrix and use the square root of the diagonal
elements to answer the question ‘what are the uncertainties in the best-
fit parameters?’.

Chapter summary

• The χ2 statistic can be used for hypothesis testing.
• The question ‘are my data consistent with the proposed model?’ can be

answered by analysing the value of χ2
min.

• The number of degrees of freedom, ν, is equal to the number of data
points, N , less the number of constraints, N .

• For a good fit, the expectation value of χ2 is ν, with a standard deviation
of

√
2ν.

• If χ2
min > ν + 3

√
2ν the null hypothesis is rejected.

• Reduced chi-squared, χ2
ν , is defined as χ2

ν = χ2
min

ν
.

• Occam’s razor can be used to eliminate unwarranted extra parameters
in a theoretical model.

• Student’s t distribution should be used when comparing experimental
results with an accepted value with a small number of degrees of
freedom.

• It is possible to scale error bars and estimate the statistical fluctuations
in a data set if one is confident that the appropriate theoretical model
has been used to describe the data (at the expense of foregoing any
discussion about the quality of the fit).
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Exercises

(8.1) Confidence limits for χ2
ν

Make a table similar to Table 8.1 and calculate the 68%
and 90% confidence limits as a function of the degrees
of freedom for the χ2

ν statistic.

(8.2) Confidence limits and χ2
ν

After performing a fit with 10 degrees of freedom the
value of χ2

min is found to be 15.9. Calculate (a) the value

of χ2
ν , and (b) the probability of obtaining a value of

χ2
min equal to this value or larger given the degrees of

freedom. In another fit with 100 degrees of freedom,
the value of χ2

min is 159. Calculate (c) the value of χ2
ν ,

and (d) the probability of obtaining a value of χ2
min equal

to this value or larger given the degrees of freedom.
Comment on the differences between the values obtained
in part (b) and (d).

(8.3) Does the noise on a photodiode signal follow a Gaussian
distribution?
As we discussed in Chapter 1, for very low intensities the
distribution of counts from a photodetector is expected
to follow the Poisson shot-noise distribution. However,
for larger photon fluxes the noise on the voltage gen-
erated in a photodiode circuit is expected to follow a
Gaussian distribution. Figure 3.4 shows the signal output
from a photodiode as a function of time, and in part (b)
a histogram of the distribution of data. The number of
observed data points lying within specified bands, Oi , is
given below.

Interval/σ (−∞, −2.5) (−2.5, −2) (−2, −1.5)

O 9 48 142

Interval/σ (−1.5, −1) (−1, −0.5) (−0.5, 0)

O 154 438 521

Interval/σ (0, 0.5) (0.5, 1) (1, 1.5)
O 405 318 299

Interval/σ (1.5, 2) (2, 2.5) (2.5,∞)

O 100 57 9

(i) Use eqn (3.9) to determine the number of data points
expected in each interval, Ei . (ii) Show that Ei > 5
for all bins, and hence there is no need to combine

sequential bins. (iii) Calculate χ2 from the formula
χ2 = ∑12

i=1 (Oi − Ei )
2/Ei . (iv) Calculate the number

of degrees of freedom. (v) Are the data consistent with
the hypothesis of a Gaussian distribution?

(8.4) Is the distribution of occurrences of balls in the National
Lottery uniform?
In Fig. 3.9 we showed the histogram of the occurrences
of the 49 balls in all 106 National Lottery draws for
the year 2000. The data are reproduced below. Test the
hypothesis that the balls are chosen at random, i.e. that
the distribution of occurrences is uniform.

N 1 2 3 4 5 6 7 8 9 10
O 11 11 13 14 11 22 15 9 9 16

N 11 12 13 14 15 16 17 18 19 20
O 17 12 8 13 8 15 9 13 19 9

N 21 22 23 24 25 26 27 28 29 30
O 12 10 17 13 10 9 10 15 9 14

N 31 32 33 34 35 36 37 38 39 40
O 16 17 11 13 14 11 13 21 14 13

N 41 42 43 44 45 46 47 48 49
O 12 11 16 13 10 18 16 16 8

(i) Recalling that six balls are selected per draw, and
assuming a uniform distribution, calculate the expected
number of occurrences of each ball, Ei . (ii) Show that
Ei > 5 for all bins, and hence that there is no need
to combine sequential bins. (iii) Calculate χ2 from the
formula χ2 = ∑49

i=1 (Oi − Ei )
2/Ei . (iv) Calculate the

number of degrees of freedom. (v) Are the data con-
sistent with the hypothesis of a uniform distribution of
occurrences?

(8.5) Is the temporal distribution of goals in a football game
uniform?
In September 2009, 101 goals were scored in the English
Premier League. A breakdown of the observed number
of goals, Oi , during nine equal-duration time intervals is
given below. Test the hypothesis that there is no prefer-
ential time during the game at which goals are scored,
i.e. that the time distribution of goals is uniform.
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Interval/minutes (1,10) (11, 20) (21, 30)
Goals scored 6 11 8

Interval/minutes (31, 40) (41, 50) (51, 60)
Goals scored 8 14 12

Interval/minutes (61, 70) (71, 80) (81, 90)
Goals scored 11 12 19

(i) Assuming a uniform distribution, calculate the
expected number of goals per interval, Ei . (ii) Show that
Ei > 5 for all bins, and hence there is no need to com-
bine sequential bins. (iii) Calculate χ2 from the formula

χ2 =
∑9

i=1
(Oi − Ei )

2/Ei . (iv) Calculate the number
of degrees of freedom. (v) Are the data consistent with
the hypothesis of a uniform distribution?

(8.6) Does the distribution of goals per side per game follow
a Poisson distribution?
In the first six weeks of the 2009 English Premier League
season, 229 goals were scored in the 76 games. Does the
number of goals per game per side follow a Poisson dis-
tribution? A breakdown of the occurrence, Oi , of games
in which N goals were scored by a side is given below.

Goals/side/game 0 1 2 3 4 5 6
Number of games 38 51 35 14 7 4 3

(i) Calculate the mean number of goals per side per
game, N . (ii) Assuming a Poisson distribution, calculate
the expected number of goals per side per game, Ei . (iii)
Ascertain whether some of the bins should be combined.
(iv) Calculate χ2 and the number of degrees of freedom.
(v) Test the hypothesis that the number of goals per side
per game follows a Poisson distribution.

(8.7) Is a die fair?
A die was thrown 100 times, and the number of times
each face landed up is given below.

Face value 1 2 3 4 5 6
O 17 21 14 13 16 19

If the die is fair the expected number of occurrences
would be the same for each number. Test the hypothesis
that the die is fair.

(8.8) Is a straight line a good fit to the data?
Use the data tabulated in Exercises (6.5) and (7.8) and the
best-fit straight line intercepts and gradients to calculate
χ2 for the fits. How many degrees of freedom are there
for these fits? Is it fair to conclude that the data are well
fit by a straight line for these cases?
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In his chapter we briefly discuss some topics which had to be omitted from
this book for the sake of brevity, and give an indication of where further details
might be obtained. A recurring theme in this chapter will be that owing to the
computational power afforded by modern computers it is often far easier to
generate and analyse synthetic data than it is to look for analytic solutions to
difficult problems.

9.1 Least-squares fitting with uncertainties
in both variables

We have used the method of least squares extensively throughout this book to
obtain best fits of a model to a data set, subject to the assumption that only
the uncertainty in the dependent variable, y, was significant. There are many
instances when the uncertainty in the independent variable, x , is also signifi-
cant, and should be included in the calculations. Here we briefly discuss some
of the issues which arise and possible strategies for including the uncertainties
in both variables into the analysis.

9.1.1 Fitting to a straight line

For the straight line y = mx + c, we previously included the y-uncertainty,
αy i , in our analysis. If there is also an x-uncertainty, αx i , this can be viewed
as generating an equivalent y-uncertainty of m αx i , as is evident from Fig. 9.1.
Therefore we can modify the definition of χ2 to be:

χ2 (m, c) =
N∑

i=1

(yi − mxi − c)2

α2
y i + m2α2

x i

. (9.1)

The weight, wi , is defined as

Fig. 9.1 In linear regression, an x-
uncertainty, αx i , in the independent variable
brings about an equivalent y-uncertainty of
m αx i .

1

wi
= α2

y i + m2α2
x i , (9.2)

and can be interpreted as the inverse of the variance of the linear combination
yi − mxi − c. Equation (9.1) is of the appropriate form, i.e. a sum of N random
variables normalised by their variance, for the applicable distribution to be
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that of χ2. The difficulty in using eqn (9.1) is the nonlinear dependence of
χ2 on m. Possible strategies to be pursued with this approach are outlined
in Press et al. (1992, Section 15.3). Finding the uncertainties in m and c is
significantly less straightforward than the cases considered in Chapter 7 owing
to this nonlinear dependence of χ2 on m. If the errors follow a Gaussian
distribution then numerical techniques are used to locate the �χ2 = 1 contour
(Press et al. 1992, Section 15.3); if the errors are not normally distributed a
Monte Carlo technique is usually adopted to quantify the uncertainties (see
Section 9.3).

9.1.2 Fitting to a more general function

For the general case we can define a sum of the weighted squared residuals, S,
defined as:

S =
N∑

i=1

[
wx i (xi − Xi )

2 + wy i (yi − Yi )
2
]
. (9.3)

Here xi and yi are the experimental measurements of the two variables, and Xi

and Yi are predicted, or calculated, values subject to some model. Typically,
the weightings are chosen to be the inverse of the variances, wx i = 1/α2

x i , and
wy i = 1/α2

y i , but other models are also used. Therefore the sum does not, in

general, have the χ2 distribution of Chapter 8, which is why we use another
symbol. The papers by Reed (1989, 1992) and Macdonald and Thompson
(1992) discuss this methodology both in the context of fitting a straight line,
and more general functions. Macdonald and Thompson’s work is an excellent
review of previous presentations, and provides a survey of the algorithms
adopted to tackle the problem of how to minimise S.

9.1.3 Orthogonal distance regression

Fig. 9.2 The orthogonal distance, �, of a
point from the best-fit straight line is shown.
In orthogonal distance regression the sum of
the squares of the orthogonal distances for
all data points is minimised in order to find
the best-fit straight line. The concept can be
extended to more general functions.

Another generalised least-squares method is that of orthogonal distance
regression. The modus operandi of conventional linear regression is to min-
imise the sum of the squared vertical distances (see Fig. 5.7) between the data
and the y-coordinates of the fit line for the same x-coordinate. In contrast,
in orthogonal distance regression it is the orthogonal distances between the
data and the fit line which are minimised, as depicted in Fig. 9.2. Consider
once more the straight line y = mx + c. An orthogonal line will have a
gradient of −1/m, and be described by the equation y′ = −x/m + c′. If
this second line passes through the data point (x1, y1) its equation becomes
y′ = (x1 − x) /m + y1. These two lines will intersect at the point (xInt, yInt),
where the coordinates are given by:

xInt = x1 + my1 − mc

1 + m2
, (9.4)

yInt = mxInt + c. (9.5)
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The orthogonal distance, �, between the data point (x1, y1) and the fit line is
obtained from the equation:

�2 = (x1 − xInt)
2 + (y1 − yInt)

2 . (9.6)

In the method of orthogonal distance regression, the sum of the orthogonal

Fig. 9.3 An error surface with more that one
minimum. The strategies discussed in earlier
chapters are prone to become trapped in the
local minimum. Algorithms which incorpo-
rate random changes to the search parameters
are better at finding the global minimum.

distances is minimised by varying the fit parameters (in this case, m and c).
We recognise the sum of the squares of the orthogonal distances as a special
case of eqn (9.3). The concept can be extended to more general functions,
and is clearly described in the paper by Boggs et al. (1987). A range of
commercial software packages exist for implementing different orthogonal
distance regression algorithms.

9.2 More complex error surfaces

In Chapters 6–8 we saw numerous examples of error surfaces. All of these had
the feature that there was a single well-defined minimum, and we discussed
various strategies of how to locate the best parameters. Error surfaces can be
more complicated, as shown schematically in Fig. 9.3. We must distinguish
between local minima and global minima. The bane of all of the efficient
methods for finding minima we have discussed previously is that they can get
‘trapped’ at local minima. To overcome this issue there exist different search
algorithms which incorporate random changes to the search parameters. Often
this leads to an increase in the value of χ2 (or whichever quantity is being
optimised), which is to the detriment of the minimisation procedure. However,
allowing the option of ‘uphill’ trajectories across the error surface allows the
possibility of escape from local minima. We discuss in slightly more detail two
methods which are implemented extensively.

9.2.1 Simulated annealing

This method is based on an insight from statistical mechanics, and is outlined
in the article by Kirkpatrick et al. (1983). Consider the process by which a
metal cools and anneals. At a high temperature the atoms in the metal are free
to move, and as the metal is cooled the mobility decreases. The high initial heat
allows the atoms to depart from their initial positions, such that, on cooling,
they can arrange themselves into a pure crystal with long-range order. The
crystalline state represents a lower energy configuration for the system. The
process of cooling the metal slowly gives the atoms a higher probability of
finding configurations with an internal energy lower than the starting condition.
The method hinges on the cooling being sufficiently slow, allowing the atoms
to redistribute themselves into a lower-energy configuration as their mobility
decreases.

The analogy with finding the global minimum of an error surface is the
following. The trajectory across the error surface is driven by updating the
values of the fit parameters with a random increment. This corresponds to
the role heat plays in the thermodynamic system. The role of ‘temperature’
is played by a parameter that dictates the probability of the increment being a
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certain size. The ‘temperature’ is then slowly reduced to zero when the final
values of the parameters chosen are ‘frozen in’. For the initial high ‘temper-
ature’ the parameters essentially change randomly, in analogy with atoms in
the metal being very mobile. As the ‘temperature’ is reduced the trajectory
tends to be downhill on the error surface, in analogy with the thermodynamic
system finding a lower energy configuration. Crucially the opportunity for
uphill motion at finite ‘temperature’ offers a route out of local minima.

9.2.2 Genetic algorithms

Genetic algorithm techniques, like simulated annealing, can also find the
global minimum on the error surface. The first step is to encode potential
solutions to the problem (for us, the set of parameters which minimise χ2).
This can be done as a bit string1 in an object known as a chromosome, to110010010 is an example of an 8-bit binary

string. emphasise the link with evolutionary biology. The algorithm produces gener-
ations thus:

(1) A large population of random chromosomes is generated. Each of these
chromosomes encodes the information from different solutions (for our
case, these are different values of the parameters).

(2) Each chromosome is assigned a fitness score, which is a number to
represent how well that particular trial solution solves the problem (the
fitness score needs to increase as χ2 decreases).

(3) Two members of the present population are selected such that a new
generation can be bred. The selection procedure is such that chromo-
somes with a higher fitness score are more likely to be selected.

(4) A ‘child’ (or new trial solution) is generated by the two ‘parents’ repro-
ducing. Two genetic operations, crossover and mutation, are used to
produce the next generation. The analogy with biological evolution is
that the child shares many of the attributes of its parents. Dependent on
the crossover rate (which is set in the algorithm), a bit is randomly cho-
sen in one chromosome, and all subsequent bits in the first chromosome
are replaced by the bits from the second chromosome.

(5) Each bit in the selected chromosomes has a random (very small) prob-
ability of being flipped (i.e. 0 becomes 1, and vice versa)—this is
mutation.

(6) Steps 2–5 are repeated until a new population has been generated.

A consequence of the process utilising selection based on fitness, and repro-
duction with crossover and mutation, is that the next generation of chro-
mosomes is (i) different from the previous generation, and (ii) typically
fitter. New generations are generated until the best solution is obtained,
within some tolerance. Like simulated annealing, the stochastic nature of
the algorithm enables trial solutions to avoid becoming ‘stagnated’ in
local minima, and the global minimum to be found. Many of the ideas
implemented in contemporary genetic algorithms were introduced by Hol-
land (1975); the book contains further details of how to implement the
procedure.
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9.3 Monte Carlo methods

9.3.1 Introduction to Monte Carlo methods

Monte Carlo2 methods are numerical techniques for calculating quantities such 2The methods are named after the area of
Monaco where a famous casino is located.
Random numbers are a defining feature of
Monte Carlo calculations, much as the laws
of chance govern gambling games.

as integrals, probabilities, and confidence limits, by the use of a sequence of
random numbers.3 At one level the ethos of Monte Carlo methods can be

3Technically, computers generate pseudo-
random numbers, but the difference will not
be of concern for us.

viewed as being experimental statistics, i.e. the analytic approach adopted
previously is replaced with a numerical methodology. The computational
power of modern computers enables a large number of calculations to be per-
formed, thus circumventing in some circumstances a lack of deep theoretical
understanding.
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Fig. 9.4 A Monte Carlo method for evalu-
ating π . The coordinates of the points are
selected at random. With NIN points inside
the circle after NTOT trials, we get the esti-
mate π = 4 × NIN/NTOT.

We illustrate the methodology by showing the Monte Carlo calculation of
π . Consider Fig. 9.4, which shows a circle of diameter 1, circumscribed by a
square with sides of length 1. Elementary geometry reveals that the ratio of
the area of the circle to the area of the square is π/4. Now imagine we can
generate a random number, r , constrained to the interval 0 < r < 1. The first
two numbers chosen are used as the (x, y) coordinates of a point within the
perimeter of the square of Fig. 9.4. Many such pairs are generated, and some
of the points generated are depicted in the figure. For each point the following
question has to be answered: does the point lie within the circle? After NTOT
trials let NIN denote the number of points inside the circle. Our estimate of

π is then π = 4 × NIN

NTOT
. Table 9.1 shows the results obtained as a function of

the total number of trials. How does one estimate the uncertainty in the value
deduced from a Monte Carlo simulation? Using the relevant distribution for the
number of points inside the circle it is expected that the fractional uncertainty
in the mean scales as 1/

√
NTOT. There are significantly more efficient methods

for calculating π ; the purpose of this example was to highlight the Monte Carlo
methodology.

Table 9.1 The evolution of the
Monte Carlo estimate of π with
sample size NTOT. Five differ-
ent simulations were run for each
value of NTOT, from which the
mean and uncertainty were calcu-
lated.

NTOT π Uncertainty

100 3.18 0.05
500 3.15 0.03
1000 3.14 0.03
5000 3.124 0.009
10000 3.145 0.003

9.3.2 Testing distributions with Monte Carlo methods

The example of estimating π was a special case where the random num-
bers generated in the interval 0 < r < 1 could be used without having to
be processed further. Typically, this is not the case. The more general case
is where we are interested in the properties of some probability distribution
function, PDF (x). The transformational method is used such that the num-
bers chosen at random are distributed according to our desired distribution,
PDF (x) (see Cowan 1988 and Bevington and Robinson 2003 for details).
Having obtained the appropriate distribution we can proceed to collect syn-
thetic data sets (much as we would collect genuine experimental data from
a real experiment). Having obtained a sequence of Monte Carlo generated
values we can apply the statistical techniques discussed in earlier chapters to
estimate parameters of interest, such as the mean, variance, etc. In common
with the specific case of estimating π demonstrated in the previous section,
the accuracy of the results scale as 1/

√
NTOT, with NTOT being limited only

by the computational power and the complexity of the problem.
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One of the most powerful applications of Monte Carlo techniques is to
generate confidence limits and distribution functions of random variables. The
discussion of the confidence limits obtained from fit parameters in Chapter 7
assumed that the appropriate distribution function was a Gaussian, largely
motivated by the central limit theorem. However, there are many examples,
especially with nonlinear least-squares fitting, which yield non-normal error
distributions. Monte Carlo simulations offer a simple and fast way to map out
the distribution function and to ascertain, say, the relevant �χ2 contour for the
confidence limit of interest. The article by Silverman et al. (2004) has examples
of computer simulated histograms for probability distribution functions of
products and quotients of independent random variables. Further details about
Monte Carlo simulations can be found in the books by Bevington and Robinson
(2003, Chapter 5), Cowan (1998, Chapter 3) and Press et al. (1992).

9.4 Bootstrap methods

Often real data sets have probability distributions which do not perfectly match
one of the simple, classical distributions we have discussed extensively in the
earlier chapters of this book. In this case it is not possible to derive simple ana-
lytic results for the confidence limits. Moreover, there are occasions when we
want to consider more complicated statistics than the mean, standard deviation,
etc. Furthermore, in addition to the question ‘what are the confidence limits?’,
we can also ask ‘are these values realistic?’. Efron developed the bootstrap
method as a numerical technique that lets us derive confidence intervals for
any statistic, on a data set with any probability distribution function. Indeed,
the bootstrap method works even if we don’t know the probability distribution.
The article by Efron and Tibshirani (1986) provides a survey of bootstrap
techniques, with the definition of the bootstrap as ‘a computer-based method,
which substitutes considerable amounts of computation in place of theoretical
analysis’ (Efron and Tibshirani 1986, p. 54, opening paragraph). Further details
of how to implement bootstrap algorithms can be found in Press et al. (1992,
Section 15.6).

The concept of replacement is important for distinguishing among various
sampling schemes. Sampling schemes may or may not use replacement—an
element from the original set can be selected many times with replacement, but
cannot be selected more than once without replacement. For example, consider
the case when there are 10 red and 10 blue balls in a bag, and a sample of two is
desired. Say we first choose a red ball. With replacement, the first ball drawn
is put back into the bag, such that the probability of the second ball drawn
being red is one-half, as is the the probability of the second ball drawn being
blue. Without replacement, the probability of the second ball drawn being red
is 9/19, and the probability of the second ball drawn being blue is 10/19.

Consider the case where there are N data points, each of which could either
be a single measurement, or a more complex object such as (xi , yi ) pairs.
From these data points a statistic of interest can be calculated (such as the
mean, or gradient of the best-fit line). The bootstrap method is implemented as
follows:
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(1) Generate a synthetic data set with the same number of points as the
original set by selecting, at random, N data points from the original set,
with replacement.4 4It is also possible to generate synthetic sets

with a different number of elements from the
original data set, but we do not consider that
complication here.

(2) Calculate the statistic of interest for the synthetic data set.
(3) Repeat the first two steps a large number of times (typically many

hundreds or thousands of times).
(4) The distribution of the large number of computed values of the statistic

form an estimate of the sampling distribution of the statistic.

Subject to the assumption that the data points are independent in distribution
and order (Press et al. 1992, Section 15.6), the bootstrap method can answer the
question as to the form of the sampling distribution for the statistic, and what
is (say) the 68% confidence interval. Replacement is crucial in the procedure,
as it guarantees that the synthetic data sets are not simply identical to the
genuine data set, i.e. any of the original data points can appear once, not
at all, or many times in a synthetic data set. As only the genuine data are
used, the bootstrap is an example of a resampling method. Superficially, it
appears as if we are getting something for nothing from the bootstrap method.
This was one reason why it took some time for the bootstrap method to
gain acceptance. Nowadays the method is backed by sufficiently rigorous
theorems to be regarded as reputable. Since the method involves a random
number generator it fits into the class of Monte Carlo methods discussed in
Section 9.3.

9.5 Bayesian inference

All of the results presented to date in this book have been within the framework
of the frequentist approach to statistics. An event’s probability is interpreted
as the limit of its relative frequency after a large number of trials. An alternative
approach to statistics is adopted by Bayesians. Bayes’ theorem5 was derived 5Named after the eighteenth century English

clergyman Thomas Bayes.from the general axioms of probability, and relates the conditional and prior
probabilities of events A and B:

P (A|B) = P (A)
P (B|A)

P (B)
, (9.7)

where P (A|B) is the conditional probability of obtaining A given that event
B has occurred, P (B|A) is the conditional probability of obtaining B given
that event A has occurred, and P (A) and P (B) are the unconditional, or
prior, probabilities for A and B. The term prior probabilities for A conveys
that the probability does not take into account any information about B. Note
in particular that A and B do not have to be repeatable events. The vertical
bar (‘|’) in some of the terms in eqn (9.7) denotes ‘given’—the information
to the right of the bar is taken as being true. In the Bayesian formulation the
background information, denoted I , is explicitly included to emphasise that
our calculations often make assumptions, and are hence conditional on I .

Inherent in the Bayesian formulation is the evolution of our certainty about a
certain hypothesis, H , when more data become available. The prior probability
which represents the degree of plausibility of the hypothesis, H , given the
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background information, I , is P (H |I ). After experimental measurements,
some data, D, become available. Using eqn (9.7) we modify the likelihood
function, P (H |D, I ):

P (H |D, I ) = P (H |I ) P (D|H, I )

P (D|I ) , (9.8)

which represents the posterior probability, i.e. the plausibility of the hypothe-
sis H , given the data and background information.

Fig. 9.5 The evolution of the posterior prob-
ability distribution function for the bias-
weighting of selecting a specific colour from
a computer generated data set with the ratio
red(40): green(30): blue(30) as a function of
the number of samples. The number of sam-
ples are 10 for (a), 100 for (b) and 1000
for (c). As the number of trials increases
the posterior probability distribution func-
tions sharpen and peak at values close to the
parent values. The functions have been scaled
to have the same maximum value.

To illustrate the Bayesian formulation, consider the following computer gen-
erated example. A bag contains coloured balls, in the ratio red(40): green(30):
blue(30). We consider the evolution of the posterior probability distribution
function for the bias weighting of selecting a specific colour as a function of
the number of samples. If we denote by G the bias weighting for obtaining a
green ball, then 1 − G is the bias weighting for not obtaining a green ball. After
N samples the posterior probability distribution function, P (GREEN|D, I ), is
proportional to6 Ga (1 − G)b, where a is the number of green balls obtained,

6This is the binomial distribution function,
and the derivation of this result is outlined in
Chapter 2 of Sivia and Skilling (2006).

b is the number of red or blue (i.e. not green) balls obtained, and a + b = N .
A similar result is obtained for the bias weighting for red and blue. Figure 9.5
shows the evolution of the (unnormalised) posterior probability distribution
functions for the bias weightings for red, green and blue. The number of
samples are 10 for (a), 100 for (b) and 1000 for (c). As the number of trials
increases the posterior probability distribution functions sharpen and peak at
values close to the parent values. The functions have been scaled to have
the same maximum value, as it is the shape of the functions which is of
interest to us. Note that (i) for a relatively small number of samples there is
a broad range of bias weightings for each colour; (ii) as more data become
available the centres of the functions evolve much less, and the widths of the
distributions become narrower, reflecting our higher confidence in the values of
the bias weighting obtained. The evolution of the peak position of the different
posterior probability distribution functions shown in Fig. 9.5 as a function of
the number of samples is listed in Table 9.2.

An excellent treatment of Bayesian inference in data analysis is to be found
in the book of Sivia and Skilling (2006); the book by Cowan (1998) gives
examples of Bayesian statistical tests in particle physics experiments; and the
article ‘Why isn’t every physicist a Bayesian?’ by Cousins (1995) illustrates
the issues involved when a practising experimenter chooses which of the two

Table 9.2 The peak position of the dif-
ferent posterior probability distribution
functions shown in Fig. 9.5 as a function
of the number of samples.

Samples Red Blue Green

10 0.5 0.1 0.4
50 0.42 0.16 0.42
100 0.38 0.29 0.33
500 0.378 0.340 0.282
1000 0.376 0.319 0.305
2000 0.3955 0.3095 0.2950
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major frameworks to adopt. D’Agostini’s article (2003) highlights the role of
Occam’s razor, discussed in Section 8.7, in the Bayesian approach.

9.6 GUM—Guide to the Expression
of Uncertainty in Measurement

We noted in Chapter 1 the potential confusion over the interchangeable use
of the terms ‘error’ and ‘uncertainty’. In the 1990s many international bodies
which represent professional metrologists, who have responsibility for mea-
surements and standards, published Guide to the Expression of Uncertainty in
Measurement, or the GUM (1995). Organisations which support GUM include
Bureau International des Poids et Mesures (BIPM), International Union of
Pure and Applied Physics (IUPAP), International Union of Pure and Applied
Chemistry (IUPAC), and the International Organization for Standardization
(ISO). The motivation for GUM is to clarify the definition of uncertainty,
with the goal of supporting a fully consistent and transferable evaluation of
measurement uncertainty. It should be noted that, at present, the use of GUM
is not widespread in university laboratories. In this book we have classified
errors as either random or systematic, and made no attempt to combine them.
In the GUM procedure a Type A uncertainty is evaluated by statistical methods,
and a Type B uncertainty is evaluated by non-statistical methods. The statistical
techniques introduced in Chapter 2 for dealing with repeat measurements can
be used to evaluate Type A uncertainties; examples of probability distribution
functions relevant for Type B uncertainties are the Gaussian and uniform
distributions encountered in Chapter 2. After the relevant evaluations, the Type
A and B uncertainties may, or may not, be reported separately, in contrast to the
combination of the two components, which is always reported. A very readable
introduction to GUM can be found in Kirkup and Frenkel’s book (2006).
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abscissa, 54
absolute uncertainty, 18
accepted value, 3

comparing with experimental results, 28
accuracy, 3, 6
addition in quadrature, 41, 43

see also Pythagoras’ theorem
agreement with theory, 28, 105–6
aliasing, 59
analogue device, precision of, 5–6
arbitrary function, least squares fit to, 72–4,

108
arbitrary units, 55
arithmetic mean, see mean
autocorrelation, 81

test for, see Durbin–Watson statistic
see also lag plot

average see mean
see also weighted mean

average deviation, 11
see also standard deviation

Bayes’ theorem, 127
Bayesian approach to statistics, 127
Bayesian inference, 127–9
bell curve, 13

see also Gaussian
best-fit parameters, how to obtain, 73
best-fit straight line, 60

see also method of least squares;
chi-squared

bias weighting, 128
bin width of histogram, 12

combining bins, 111–113
binomial distribution, 128
bootstrap method, 126–7

calculus approximation to error propagation,
38–40, 43–4, 47

calibration curve, 98
calibration error, 6, 62
central limit theorem, 31–4, 36, 60, 113–114
Chauvenet’s criterion, 27, 35
chi-squared, χ2

contours, 75–6
cumulative distribution, 104–5
definition of, 61
distribution for one degree of freedom, 105

expansion of, 75, 88
expectation value, 104
for Poisson statistics, 68
maximum likelihood method and, 60–1
minimisation, see method of least squares
minimum, χ2

min, definition of, 76
probability distribution of, 104–5
reduced, χ2

ν , definition of, 107
testing distributions, 111–114, 118–119
testing the goodness-of-fit, 108–111, 119
used in hypothesis testing, 105–6
variance of, 104
variation near a minimum, 75, 98

clarity of data presentation, 53–7
combining errors, see propagation of errors
combining experimental results, 49–50

see also weighted mean,
common sense in error propagation, 47
common uncertainty, 58–9, 65, 115–116
conditional probability, 127
confidence limits

and Student’s t-distribution, 115
for a Gaussian, 25–6
for reduced chi-squared, 107, 118
on parameters from a least squares fit, 75–7

constraints, 103, 112–114
in fitting, 79–80
see also degrees of freedom

contour plot, 75
convergence, 87, 97–8
correlated uncertainties, 93
correlation coefficients, 94
correlation matrix, 94, 96–7
counting statistics, uncertainty in, see Poisson

distribution
covariance, 94–5
covariance matrix, 92–4

see also error matrix
cumulative distribution, 24–5, 104–6
curvature matrix, 92–3, 98
curvature of error surface, 75, 88, 90–3
curve fitting, see method of least squares

damping constant, see regularisation constant
data reduction, 59, 103
data rejection, see Chauvenet’s criterion
decimal places, reporting results, 19
degrees of freedom, 14, 102–5

dependent and independent variables on
graphs, 54

deviation, definition of, 11
see also, standard deviation

diagonally-dominant matrix, 91
digital device, precision of, 6
discrete variable, 28, 35
distribution

centre of, width of and uncertainty in
location of centre, 9

distributions
continuous, 12
discrete, 28
of the mean, see also standard error, 16
parent, 13
sample, 13
Student’s t,26, 115
see also probability distributions

dominant error, 44–5, 48–9
Durbin–Watson statistic, 81–2, 83

equations, linearising, 54, 57, 64, 69
error, see also uncertainty

calculating errors from least squares
minimisation, 74–7

calibration, 6, 62
combining, see propagation of errors
correlated, 95–6, 98–9
dominant, 44–5, 48–9
experimental strategy based on error

analysis, 47–9, 52, 71, 83
final quoted, 17
fractional, 17, 30, 48, 56, 125
in counting experiments (Poisson

statistics), 30
in mean, see standard deviation of the mean
in standard deviation, see error in the error
in weighted mean, 50
independent, 75
insertion, 6
matrix, 92
mistakes, 3, 4–5, 20
percentage, 45–6, 48, 69
propagating, see propagation of errors
random, 3
rounding, 18–19
scaling, 115–116
standard, 14–16, 75, 92–3



134 Index

error (cont.)
systematic, 4, 6, 62–3
when not quoted, 18
zero, 6, 62

error bars
adding to graph, 55–6
as a confidence limit, 25, 30
asymmetry of, 39–40, 47
non-uniform, see also heteroscedastic data,

68–72
error function

confidence limits and, 25
definition of, 24
exercises, 35
worked example, 25

error in the error, 16–17, 20
error matrix

analytic form for a straight-line fit, 93
definition of, 92
diagonal elements being variance of

parameters, 92
exercises, 98–9
see also covariance matrix

error propagation
see propagation of errors

error surface, 74–5
complex error surfaces with multiple

minima, 123–4
curvature of, 75, 88, 90–3
moving across, 76

exact numbers, 19
extrapolation, 59, 103–4
expansion of error surface

Gauss–Newton method, 89–90
Newton method, 88–9

expectation value, definition of, 24
experimental strategy based on error analysis,

47–9, 52, 71, 83

factorial function (N!), definition of, 29
fitting data to a model, 116–117

see also method of least squares
fitting with constraints, 79–80
fractional uncertainty, 17, 30, 125

see also percentage uncertainty
frequentist approach to statistics, 127
functional approach

for multi-variable functions, 41–3
for single-variable functions, 38–40

fundamental noise, 3–4

gamma function, definition of, 104
Gaussian

and central limit theorem, 31
chi-squared test of, 113–4
confidence limits, 25, 35
definition of, 13
experimental example, 27–8
probability distribution function, 24

Gauss–Newton method, 89–90

genetic algorithm, 124
global minimum, 123
good fit, definition of, 58, 68, 110–111
goodness-of-fit parameter, see chi-squared
gradient-descent method, 87–8
gradient of straight line graph, see

straight-line graphs
gradient vector, 88
graphs

adding best-fit line, 57–9
choosing scales, 54
data symbols in graphs, 55, 57
guidelines for plotting data, 53–7
guide to the eye, 57
lab-book graphs, 53
labelling axes, 54–5
legends, 57
linearising data for plotting, 54
plotting error bars, 55–6
publication graphs, 54
seeing trends in the data graphically,

56–7
using graphs to estimate errors,

62–3
grid-search method, 86–7
GUM (Guide to expression of Uncertainty in

Measurement), 3, 129

Hessian matrix, 89
and curvature matrix, 92

heteroscedastic data, 68–9
histogram, 12
hyper-surface, 74, 85
hypothesis

null, 101
testing, 101–2, 108–9

independent errors, 75
see also correlated uncertainties

independent events, 28–30
independent variable, 41
insertion error, 6
integral probability, see cumulative

distribution
intercept of straight line graph, see

straight-line graphs
interpolation, 59, 103–4
iterative methods, 86, 97–8

Jacobian matrix, 89–91
Johnson noise, 4

lab-book graphs, see graphs
lag plot, 81–2
likelihood function, 128
line minimisation, 87
line of best fit

adding to graph, 57
definition, 58
exercise, 64

relation to method of least squares, 60–3
see also straight-line graphs

linear regression, see straight-line graphs, 83
linear relationship between dependent and

independent variables 54
linear trend line, 58

see also method of least squares
linearising data, 54, 64
local minimum, 87, 88, 123

Marquardt–Levenberg method, 90–2
matrix

correlation, 94,
covariance, 92–4
curvature, 92–3, 98
diagonally-dominant, 91
error, 92
Hessian, 89
Jacobian, 89–91
transpose, 89

maximum likelihood, 59–61
mean

definition of, 10
deviation from, 10
difference between two, 48–9
distribution of, see central limit theorem
error of, see standard error
exercises, 20
weighted, see weighted mean

measurements
accuracy of, 6
exercises, 20
precision of, 5–6
repetition of, 2–6, 9–10, 27, 29, 50, 57, 69
trial, 10, 16, 32–3, 125, 127–8
uncertainty in, 2

median, definition of, 104
method of least squares, 58–61

analytic results for unweighted best-fit
straight line, 58–9

analytic results for weighted best-fit
straight line, 69–70

confidence limits for a least squares fit,
75–7

fit to an arbitrary nonlinear function,
72–4

fit to an nth order polynomial, 72
obtaining the best-fit parameters by

minimisation, 73
obtaining the errors in the best-fit

parameters by minimisation, 74–7, 83
worked examples, 77–9

uncertainties in both variables, 121–122
minimisation methods, 86–92

see also grid-search method;
gradient-descent method; Newton
method; Gauss–Newton method;
Marquardt–Levenberg method;
simulated annealing; genetic
algorithm
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mistakes, 3, 4–5, 20
confusion over units, 5
malfunction of apparatus, 5
misreading scales, 5

mode, definition of, 104
model

number of parameters in, see Occam’s
razor

testing, see hypothesis; chi-squared
Monte-Carlo method, 92, 125–6
most probable value, see mode

Newton method, 88–9
Newton–Raphson method, 86, 97–8
noise

see fundamental noise, technical noise, shot
noise

see also, signal to noise
nonlinear fitting, see method of least squares
normal distribution, see Gaussian
normalised probability distribution, definition

of, 23
normalised residual, 72, 81, 83

see also residual and lag plot
null hypothesis, 101

Occam’s razor, 114, 129
offset on instrument revealed by graph, 62–3
ordinate, 54
orthogonal distance regression (ODR), 122–3
outliers, 26–7, 49, 81
overdetermined system, 60

parabolic approximation to error surface at
minimum, 75, 98

parameter estimation, 19, 40, 60–1, 67, 72–3
parent distribution, definition of, 13
percentage uncertainty, 45–6, 48, 69

see also fractional uncertainty
plausibility of hypothesis, 127–8
Poisson distribution, 28–31

approximation for large mean, 30–1,
36

asymmetry of, 29
chi-squared test of, 112–113
confidence limits, 30
definition of, 29
exercises, 35–6
fractional uncertainty for Poisson counts,

30
mean of, 29
standard deviation of, 29
worked examples, 29–30

posterior probability distribution function,
127–8

precision, definition of, 3, 5
of analogue device, 5–6
of digital device, 6

prefixes used in the SI system, 54
prior probability distribution function, 127–8

probability density function (PDF), see
probability distribution, 23

probability distributions
binomial, 128
chi-squared, 104
Gaussian, 24, 60
normal, see Gaussian
Poisson, 29
uniform, 35

propagation of errors
calculus approximation for many variables,

43
summary table for common

multi-variable functions, 44
calculus approximation for single variable,

38–9
summary table for common single

variable functions, 39
worked example, 40

covariance in, 95–7
exercises, 51–2
functional approach for many variables,

40–1
worked example, 42–3

functional approach for single variable,
37–8

worked example, 39–40
summary, 47
with correlated errors, 95–6, 98–9

publication graphs, see graphs
Pythagoras’ theorem applied to error

propagation, 41, 43

quadratic sum, see addition in quadrature
quoting results, 19, 20

random error, 3
exercises, 20
influence on precision, 3–4, 9–17

random number, 125, 127
reduced chi-squared, χ2

ν , 107
confidence limits in, 107, 118
role in testing the null hypothesis, 107
see also chi-squared

regression analysis, 60
regularisation constant, 90–1
rejecting outliers, 26–7

see also Chauvenet’s criterion
rejecting the null hypothesis, 102, 106–8
repetition of measurements, 2–6, 9–10, 27,

29, 50, 57, 69
replacement, 126
reporting results, 17–19, 20–1
resampling, 126–7
residual, 60, 63–4, 90

see also normalised residual and lag plot
rounding, 18–19

errors, 18
round-to-even method, 19
rules for rounding, 18–19

sample distribution, definition of, 13
sampling, 126–7
scale factor, 93, 115–116
scientific notation, 18, 21
shot noise, 4, 30, 118

see also Johnson noise
signal to noise, 4, 14, 30–1
significance level (%), 101–2, 106
significant figures

and scientific notation, 18
reporting results, 17, 21
rule for addition and subtraction, 19
rule for identifying, 18
rule for multiplication and division, 19

see also error in the error
simulated annealing, 123–4
skewness, 104
slope, see straight-line graphs
standard deviation, σ

68% confidence limit, 26
as uncertainty in a single measurement,

12
as width of distribution, 10
definition of,

rough and ready approach, 10–11
statistical, 12

evolution with sample size, 14
exercises, 20
of parent distribution, 13
of Poisson distribution, 29
of sample distribution, 13
worked example, 11–12

standard deviation of the mean (SDOM), 16,
26, 31, 50

see also central limit theorem
see also standard error

standard error, α, 4–16, 92–3
and curvature of error surface, 75
definition of, 16
exercises, 20, 98–9
see also distribution, uncertainty in location

of centre
see also standard deviation of the mean

steepest descent, 87–8, 91
step sizes, searches, 86–7, 89
straight-line graphs

curvature matrix for, 93, 95–6, 98
unweighted fit

analytic results for gradient and
intercept, 58–9

exercises, 64–5, 83
weighted fit

analytic results for gradient and
intercept, 69–70

exercises, 83
see also method of least squares

Student’s t-distribution, 26, 115
synthetic data set, 127
systematic error, 4, 6

influence on accuracy, 3
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systematic error (cont.)
using graphs to test for systematic errors,

62–3
see also calibration error, insertion error

and zero error

t-statistic, definition of, 115
tangent planes of error surface, 76, 92
Taylor series expansion, 43

in error propagation, 38, 43
of chi-squared, 75, 88

technical noise, 3–4
testing the null hypothesis, 108
tolerance, 86, 115
transformational method, 125
trigonometric functions, error propagation in,

39
Type A and Type B uncertainties, 129

uncertainty, see also error
absolute uncertainty, 18
both variables having uncertainties, and

least-squares fitting, 121–2
common uncertainty, 58–9, 65, 115–116
fractional uncertainty, 17, 30, 125
in a parameter, and contour density, 75–7
in a parameter from a Monte Carlo

simulation, 125
in counting experiments (Poisson

statistics), 30
in fit parameters, and error matrix, 92–3
in mean, see standard deviation of the mean
in standard deviation, see error in the error

in weighted mean, 50
percentage uncertainty, 45–6, 48, 69
propagation, see propagation of errors
successive repeats give different values, 2
Type A and Type B, 129
when not quoted, 18

uncorrelated variable, 41
uniform distribution, 35
update rules in minimisation, 86, 91

value
accepted, 3
best estimate of, 3

variable
continuous, 12, 23, 30–3, 35
dependent, 54
discrete, 4, 12, 28–30, 35
independent, 54

variance, 11, 24, 92–3
see also standard deviation

weighted least squares
for arbitrary nonlinear function, 72–4
for nth order polynomial, 72
for straight line fits, 69–71

weighted mean, 49–50, 52
weighting factor, definitions of, 50, 70,

121–2
what constitutes a good fit?, 58, 68, 110–111
width of distribution, see standard deviation, 3
worked examples

calculating the mean of ten measurements,
10

calculating the standard deviation of ten
measurements, 11–12

correlation matrix for a four-parameter fit,
96–7

curvature matrix for a straight-line fit,
95–6

estimating the spread of ten measurements,
10

fitting a linear function through chi-squared
minimisation, 77–8

fitting a nonlinear function through
chi-squared minimisation, 79

Poisson counting statistics, 29–30
propagating errors in multi-variable

functions, 42–3, 44–5
propagating errors in single-variable

functions, 39–40
quoting results, 17
rejecting an outlier – using Chauvenet’s

criterion, 27
testing a continuous distribution using

chi-squared, 113–114
testing a discrete distribution using

chi-squared, 112–113
testing different models using chi-squared,

109–110
testing the quality of a fit using

chi-squared, 109
using the error function, 25

zero crossing of a function, see
Newton–Raphson method

zero error, 6, 62



Uncertainties in multi-variable
functions

For the multi-variable function Z = f (A, B, C . . .): the uncertainty in Z due to the uncertainty in A is:

αA
Z = ∣∣ f

(
Ā + αA, B̄

) − f
(

Ā, B̄
)∣∣ ,

the uncertainty in Z due to the uncertainty in B is:

αB
Z = ∣∣ f

(
Ā, B̄ + αB

) − f
(

Ā, B̄
)∣∣ ,

and similarly for C , D, . . . . From Pythagoras’ theorem the total error is:

(αZ )2 =
(
αA

Z

)2 +
(
αB

Z

)2 + · · ·
Assuming small uncertainties the calculus-based approximation to this result is:

(αZ )2 =
(

∂ Z

∂ A

)2

(αA)2 +
(

∂ Z

∂ B

)2

(αB)2 +
(

∂ Z

∂C

)2

(αC )2 + · · ·

Table 2 Some simple rules for the propagation of errors in multi-variable functions. Always
perform a quick check for dominant errors before using these formulae.

Function, Z Expression used to calculate αZ

Z = A + B
}

αZ =
√

(αA)2 + (αB)2
Z = A − B

Z = A × B
⎫⎬⎭ αZ

Z
=

√(αA

A

)2 +
(αB

B

)2

Z = A

B
Z = An

∣∣∣αZ

Z

∣∣∣ =
∣∣∣n αA

A

∣∣∣
Z = k A αZ = |k| αA OR

∣∣∣αZ

Z

∣∣∣ =
∣∣∣αA

A

∣∣∣
Z = k

A

B

αZ

Z
=

√(αA

A

)2 +
(αB

B

)2

Z = k
An

Bm
αZ

Z
=

√(
n

αA

A

)2 +
(

m
αB

B

)2

Z = A + B − C + D αZ =
√

(αA)2 + (αB)2 + (αC )2 + (αD)2

Z = (A × B)

(C × D)

αZ

Z
=

√(αA

A

)2 +
(αB

B

)2 +
(αC

C

)2 +
(αD

D

)2

Z =
(

An × Bm)
(C p × Dq )

αZ

Z
=

√(
n

αA

A

)2 +
(

m
αB

B

)2 +
(

p
αC

C

)2 +
(

q
αD

D

)2
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