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PREFACE TO THE SECOND EDITION 

This book contains a detailed discussion of the fundamental principles of 
the theory of error, and those applications which are commonly encountered 
by advanced undergraduate and graduate students in the physical sciences. 
The approach is intermediate between the didactic treatments contained in 
the introductory chapters of many laboratory manuals and the lengthy 
treatises which are of interest mainly to experts in the field. 

Laboratory manuals, which seldom do more than'state the results of the 
theory, rarely give the student any insight into the underlying concepts, 
while in the present book a plausible presentation of the concepts has been 
the principal objective. The cost of the longer treatises is not justified in the 
opinion of many students of the physical sciences because most of the 
material is of little interest to them; furthermore, these treatises tend to 
adopt an isolated point of view and to neglect ,certain aspects of the practical 
conditions under which the student must estimate error. In the physical 
sciences, a sample containing more than ten measurements is rare, and a 
sample of this size is so small that it can hardly be called a statistical sample. 
Furthermore, there are usually present indeterminant errors comparable in 
magnitude to the statistical errors, and these indeterminant errors are not 
amenable to the theory. Under these circumstances, extreme rigor or the 
complication of the theory of small samples is not·entirely necessary, and 
much of the estimation of error must be done by common sense, or what 
perhaps more candidly should be called guesswork. This book contains 
some detailed examples in which the author has attempted to illustrate how 
to deal with such situations. 

In the second edition an attempt has been made to correct a number of 
mistakes which wcre unfortunately included in the first edition. Most of 
these were in the details of the concepts rather than in the mathematics. 
The sections which have received major revisions are IV-B, IV-I, V-B, and 
VI-B. 

The author wishes to thank those readers of the first edition who sent 
him their criticisms and suggestions. Special thanks are due to Dr. Ralph 
Hoyt Bacon, whose detailed comments resulted in the greater part of the 
revision. Most of his suggestions have been incorporated. There were a few 
important questions upon which the author did not agree with Dr. Bacon; 
nevertheless, even in these matters Dr. Bacon's comments were of great 
value because they forced the author to clarify his thinking. 

The author wishes to take this opportunity to thank Mrs. Olga Craw
ford, Director of Publications of the Addison-Wesley Publishing Company, 
for extensive editing· of the manuscript of both editions. Finally, he 
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wishes to express his gratitude to Dorothy Sands Beers, for her encourage
ment and for her help in reading proof. Some of the preparation of the 
manuscript for the second edition took place while the author was on 
sabbatical leave from New York University and held a Fulbright Research 
Scholarship at the Division of Electrotechnology, Commonwealth Scientific 
and Industrial Research Organization, Sydney, Australia. 

New York City 
January, 1957 

YARDLEY BEERS 
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I. INTRODUCTION 

Many people call physics an "exact science." Actually, it is exact only in 
degree. For example, the accepted value of the velocity of light was 
recently quoted as 

(2.997923 ± 0.000008) X 10'0 em sec-I. 

The figure 2.997923 X 1010 em sec-I represents the best estimate of the 
velocity, while that of 0.000008 X 1010 em sec-I is an indication of the 
reliability of the result. 

Many factors employing human judgment are involved in the determir a
tion of any "accepted" value: 

(1) In the use of measuring instruments, the last significant figure ml'st 
often be obtained by estimating a fraction of the smallest division on sone 
measuring instrument such as a meter stick or an ammeter. 

(2) In arriving at a specific value, a number of experiments are performed, 
and an "average" is taken. In some instances, certain data may be ex
cluded as being unreliable in the opinion of the observer. 

(3) Experiments of different types have differing uncertainties. In the 
computation of the final value, a weighted average of the separate values 
must be taken. The more accurate experiments are given greater im
portance, and the assignment of weight factors is again a matter of opinion. 

(4) The error of human judgment enters into all of the items above. Al
though the observer is guided by rules, these are based upon arbitrary 
assumptions and are themselves, in the last analysis, matters of opinion. If 
more than one group of observers performs an experiment, it is probable 
that there will be a difference in the final values submitted. 

The estimated uncertainty in the result of an experiment, such as the 
value 0.000008 X 1010 em sec-I quoted above, takes into account the un
certainty assigned to the experiment by the observers by analysis of the 
methods used and the inaccuracies of the data. For example, the velocity 
of light cannot be measured directly; instead, the time required for light to 
travel a given distance is measured. Thus time and distance are the meas
ured quantities, whereas the velocity is a comp¥ted quantity. The uncer
tainty in the velocity is a composite effect of the uncertainties of the 
measurements of time and distance, an example of the propagation of error. 

In evaluating these uncertainties, the individual processes of measure
ment of time and distance must be investigated in detail. Such analysis of 

1 



4 THEORY OF ERROR 

E. Determinate and indeterminate errors. Errors which may be evaluated 
by some logical procedure, either theoretical or experimental, are called 
determinate, while others are called indeterminate. 

Random errors are determinate because they may be evaluated by appli
cation of a theory which will be developed later. In some cases random or 
systematic errors may be evaluated by subsidiary experiments. In other 
cases it may be inherently impossible to evaluate systematic errors, and 
their presence may be inferred only indirectly by comparison with other 
measurements of the same quantity employing radically different methods. 
Systematic effors may sometimes be evaluated by calibration of the instru
ments against standards, and in these cases whether the errors are de
terminate or indeterminate depends upon the availability of the standards. 

F. Corrections. Determinate systematic errors and some determinate 
random errors may he removed by application of suitable corrections. For 
example, the measurements which are in error due to a kink in a steel tape 
may be eliminated by comparing the tape with a standard and subtracting 
the difference from all the measured values. Some of the random error of 
this tape may be due to expansion and contraction of the tape with fluctua
tions of temperature. By noting the temperature at the time of each meas
urement and ascertaining the coefficient of linear expansion of the tape, the 
individual values may be compensated for this effect. 

G. Precision. If an experiment has small random errors, it is said to have 
high precision. 

H. Accuracy. If an experiment has small systematic errors, it is said to 
have high accuracy. 

I. Adjustment of data. This is the process of determining the "best" or 
what is generally called the most probable value from the data. If the length 
of a table is measured a number of times by the same method, by taking the 
average of the measurements we can obtain a value more precise than any 
of the individual ones. If some of the individual values are more precise 
than others, then a weighted average should be computed. These are 
examples of adjustment of data for directly measured quantities. For com
puted quantities the process may be specialized and complicated. Later we 
shall develop a method for determining the most probable value of the slope 
of a straight line representing the graph of linearly related measured 
quantities. 

I 
I 
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III. CLASSIFICATION OF ERRORS 

A. Systematic errors. 
(1) Errors (If calibration of instruments. 
(2) Personal errors. These are errors caused hy habits of individual ob

servers. For example, an observer may always introduce an error by con
sistently holding his head too far to the left while reading a needle and scale 
having parallax. 

(3) Experimental conditions. If an instrument is used undcr constant 
experimental conditions (such as of pressure or temperature) different from 
those for which it wa.s calibrated, and if no correction is made, a systematic 
error results. 

(4) Imperfect technique. The measurement of viscosity by Poiseuille's law 
requires the measurement of the am,ount of liquid emerging from an ap
paratus in a given time. If a small amount of the liquid splashes out of the 
vessel which is used to catch it, a systematic error results. 

B. Random errors. 
(1) Errors of judgment. Most instruments require an estimate of the 

fraction of the smallest division, and the observer's estimate may vary from 
time to time for a variety of reasons, 

(2) Fluctnating conditions (such as temperature, pressure, line voltage). 
(3) Small disturbances. Examples of these are mechanical vibrations or, 

in electrical instruments, pickup of spurious signals from nearby rotating 
electrical machinery or other apparatus. 

(4) Definition. Even if the measuring process were perfect, repeated 
measurements of the same quantity might still fail to agree because that 
quantity might not be precisely defined. For example, the "length" of a 
rectangular· table is not an exact quantity. For a variety of reasons the 
edges are not smooth (at least if viewed under high magnification) nor are 
the edges accurately parallel. Thus even with a perfectly accurate device for 
measuring length, the value is found to "ary depending upon just ,,,here on 
the cross section the "length" is measured. In nuclear physics errors of 
definition are commonly the largest source of error. (See Section VII.) 

C. Illegitimate errors. 
Most, or even all, of these typcs of error are always present, at least to a 

small dcgree, in the very best of experiments and they should be discussed in 
a written report. Hm\'€\Ter, there are three types of avoidable errors 1vhich 
have no place in an experiment, and the trained reader of a report is justified 
in assuming that these are not present. 

5 
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6 THEORY OF ERnOR 

(1) Blunders. These are errors caused by outright mistakes in reading 
instruments, adjusting the conditions of the experiment, or performing 
calculations. These may be largely eliminated by care and by repetition of 
the experiments and calculations. 

(2) Errors of computation. The' mathematical machinery selected for 
calculating the results of an experiment (such as slide rules, logarithm 
tables, adding machines) should have errors small enough to be completely 
negligible in comparison with the natural errors of the experiment. Thus if 
the data are accurate to five significant figures, it is highly improper to use 
a slide rule capable of being read to only three figures, and then in the report 
to list !lsUde rule error" as a source of error. Such a slide rule should be used 
for calculating the results of an experiment having only three or preferably 
only two significant figures. On the other hand, if the experiment does give 
five significant figures, five- or six-place logarithm tables or some other more 
accurate means of calculation should be used. 

(3) Chaotic errors. If the effects of disturbances become unreasonably 
large-that is, large compared with the natural random errors-they arc 
called chaotic errors. In such situations the experiment should be discon
tinued until the source of the disturbance is removed. 

.... 



IV. RANDOM ERROR OF A MEASURED QUANTITY 

A. Proof that the sum of the squares of the deviations about the average 
value is a minimum. Previously it was stated that there exists a "most 
probable" value of a quantity. In the case of directly measured quantities 
this is generally, but arbitrarily, assumed to be the arithmetic average of 
the individual measurements. 

Let XI, X2, ••• , Xk be measured values and let x be the most probable 
value. Then the differences between the respective measured values and x 
are called deviations. (They are also called residuals.) 
For a given value Xn ) the deviation is defined as 

(1 ) 

If x is the arithmetic average of the Ie measurements, by definition 

X, + X2 + Xa + ... + x" + ... + Xk 
X= k (IA) 

and the arithmetic average of the deviations may be shown to be zero. To 
show this, we compute the sum of the deviations as evaluated by Eq. (1) 
and then divide by the total number Ie. The sum of the first terms 011 the 
right-hand sides of equations of the type of Eq. (1) is just the sum of the 
measured values L::~I x,,, which by Eq. (lA) is kx. This sum is equal 
but opposite in sign to the sum of the second terms. Therefore the arith
metic average of the deviations is zero. 

However, the squares of the deviations arc all positive, of course, and 
therefore the sum of these squares does not vanish. Next we shall prove 
that if we use the average of the measured values for x, the sum of squares 
of the deviations is a minimum. From this result we may infer that the 
"most probable" value of a computed quantity is the one for which the 
sum of squares of the deviations, when properly defined, is a minimum. We 
shall define a quantity called tbe standard deviation, which is simply related 
to this minimum value of the sum of the squares of the deviations and which 
is one of the quantities used for specifying error quantitatively. 

To carry out this proof, we first compute the squares of the deviations by 
use of Eq. (1). 

7 
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THEORY OF ERIWR 

(OXI/ = xi - 2XIX + £2, 

(OX2)2 = X§ - 2X2X + X2, 

Sum'" X = 'E (oXn)2 = (xi + x§ + ... + x; + ... + xk) 

- 2X(Xl + X2 + ... -I- Xn + ... + Xk) + lei2 

k k 

= L: X~ - 2£ L Xn + k:iP, (2) 

n=l n=l 

where k is the total number of measurements. 
In order to find the value of x which makes X a minimum, we differenti

ate X with respect to X. Since all the xn's have been fixed by experiment, 
their differentials are zero. We place the derivative equal to zero and solve 
for x: 

or 

dX 
dx 

k 

- 2 'E Xn + 2kx = 0, 
n=l 

X= 

which is the arithmetic average. 

(3) 

B. Definition of standard deviation. The preClSlon of an experiment 
can be indicated by a graphical plot of the distribution of the deviations, 
such as is shown in Fig. 1 (Section IV-E). Such a plot is obtained by divid
ing the range of observed deviations into equal intervals, noting how many 
of the observed deviations lie within each interval, and plotting these 
numbers against the average of the deviation in each respective interval. 
While such graphs are informative ill many respects, they providc 110 direct 
basis for the evaluation of the error in a quantity which is to be computed 
from two or more measured quantities. Therefore, lye wish to introduce one 
or more quantities, to be evaluated numerically, which can represent the 
gross properties of such a graph. In particular, we wish to find a quantity 
which is related to the width of such a graph, since we note that in an ex
·periment of high precision the graph tends to have a sharp maximum, while 
in an experiment of low precision the graph is relatively broad. In fact, 
having defined an appropriate quantity, in rnany cases we may choose not 
to actually plot the graph but merely to retain it as a concept. 

One quantity which we can employ is the root mean square (rms) deviation 
8', which is given by the following relation: 



Sf = 

RANDOM ERROR Oll~ A MEASURED QUANTITY 

~(OXl)2 + (OX2) 2 + ... + (OX.)' + " . + (OXk)2 
/e 

9 

(4) 

An alternative formula which frequently is more convenient for numerical 
computations may be obtained by substituting into Eq. (4) the expression 
for L~~l (oxn)2from Eq. (2), bearing in mind that Eq. (2) may be simpli
fied by making use of the fact [see Eq. (IA)] that L~~l Xn = kx. When 
these substitutions have been made, 

(4A) 

Unfortunately the quantity s' does not have the widest possible sig
nificance, because it indicates only how a particular set of k values deviate 
from their average. We do not know whether or not this quantity depends 
systematically upon the number of values k in the set. Furthermore, the 
errors we are now considering are completely random, so that a second set 
of " measurements generally does not yield an average value identical with 
the first, nor ao identical set of deviations, because of what are called 
statistical fluctuations. 

To establish a quantity which has greater significance, we employ the 
concept that two such sets of k measurements are two samples of the entire 
universe of measurements which might be made, the number of measure
ments in the universe being infinite. The quantity which is of interest to us 
is the standard deviation s which is the rms deviation of the individual 
measurements about the universe average. The square of this quantity 
frequently is called the variance. Of course, it is quite impractical to make 
all of the measurements in the universe aod then determine s exactly from a 
direct calculation, but, as we shall show in Section V-B, we can obtain an 
estimate of it from either of the following expressions: 

s= ~I2~~1 (OXn)2 
Ie - 1 ' 

(5) 

s= 
~Lk 2 k-2 n-l Xn - x 

Ie - 1 (5A) 

The relation of Eq. (5) to Eq. (5A) will be recognized to be the same as that 
of Eq. (4) to Eq. ·(4A). 
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The distinction between s' and s is important conceptually. Numerically, 
the difference between them is generally quite trivial. They are given by 
nearly identical formulas, the factor k in the denominator of 'the expression 
for s' being replaced by Ie - 1 in the expression for s. When k becomes very 
large, the expressions approach equality. When Ie is as small as 5, the differ
ence is only about 12 percent, and usually this is not large compared with 
the indeterminate errors present. 

The fact that s is larger than s' is to be expected, because we know that 
the sum of squares of deviations about the sample average is a minimum. 
Since the universe average generally does not coincide with the sample 
average, the sum of squares of the deviations pertaining to the finite sample 
about the universe average is not a minimum. 

It is interesting to note that the factor Ie - 1 which appears in the de
nominator of the expression for s is equal to the number of functionally in
dependent deviations. When /, = 1, the concept of deviation is meaning
less. When k = 2, we may compute two deviations, but they are always 
equal in magnitude, although different in sign. We may infer then that al
though we may compute Ie different deviations, there is one relation 
between them, and therefore they are not completely independent. This 
relation is, as we have seen, that their algebraic sum is equal to zero, Of, 

what we have shown is equivalent, that the snm of the squares of the 
deviations is a minimum. 

Whether s' and s are calculated directly by Eq. (4) and Eq. (5) or in
directly by Eq. (4A) and Eq. (5A), respectively, is a matter of taste or of 
convenience. Many observers prefer thc direct method because they like to 
see the individual deviations. The most laborious part of the computation 
is the calculation of the sum of the squares, and this is carried out more 
easily by the direct method, in which the numbers are the smallest possible. 
However, the discrepancies between the individual values of x are usually 
only in the last one or two significant figures, and the indirect method can 
be simplified by subtracting from the individual x's some convenient num
ber containing all of the invariant significant figures. Even then the calcula
tion of the sum of squares is somewhat more laborious than with the direct 
method, but, on the other hand, the subtraction process is somewhat 
simpler with some number chosen by convenience rather than with the 
arithmetic average. The great convenience of the indirect method comes 
in more advanced statistical analyses where not only the standard devia
tion but other quantities beyond the scope of the present treatment arc 
calculated. * In Section IV-E we shall illustrate the direct method, while in 
Section VIII-B we shall illustrate the indirect method. 

C. Average deviation. As indicated previously, the algebraic sun, of the 
deviations is zero. Therefore, if we are to define an average deviation, we 
must add the deviations without regard to sign and then divide by the 
number of observations. Then the average deviation is 

>For example, sec R. H. Dacon, Am. J. Phys. 14, 84 (1946). 

* 



HANDOM ERROR OF A MK\SUHED QUA~TITY 11 

(6) 

D. Relation of average deviation to standard deviation. Percentage 
deviation. Basically the average deviation is of less direct significance 
than the standard deviation. Nevertheless, the calculation of the average 
dev' ation involves less arithmetic than that of the standard deviation. 
Later we shall show, subject to some assumptions which are usually 
valid, that when the number of measurements is large, the ratio of the 
standard deviation to the average deviation approaches 1.25, so that the 
standard deviation can be estimated by computing the average deviation 
and multiplying by 1.25. Such an estimate is not as reliable as one com
puted from Eq. (5) or Eq. (5A) because with a finite sample the actual 
ratio is subject to statistical fluctuations and can range from 1 to approxi
mately vk72. However, in practice, such an estimate often may be ade
quate, especially if there are large indeterminate errors in the experiment. 

It is to be noted that both 8 and a have the same dimensions as x. Thu8 
if x is a length in centimeters, then both 8 and a are in centimeters. They 
may be converted to dimensionless quantities by dividing by the average x. 
The fractional standard deviation is defined as 

and the fractional average deviation as 

A =11:. x 

(7) 

(8) 

Both S and A are frequently expressed in percent by multiplying the values 
given in Eqs. (7) and (8), respectively, by 100. 

The fractional deviations S and A have significance only when the 
measurements are referred to some physically significant zero rather than 
an arbitrary one. When the zero has a physical significance, S and A are 
always independent of the units. Even when the measnrements are referred 
to a proper zero, S and A have limited usefulness when the individual devi
ations become appreciable in comparison to x. 

Illustrations of measurements referred to arbitrary zeros are those of 
temperature in degrees centigrade and in degrees fahrenheit. The zeros of 
these scales were chosen purely for human convenience. In fact, ~ince the 
zeros of the two scales do not coincide, a temperature when expressed in 
degrees fahrenheit has a different fractional standard deviation than the 
same temperature when expressed in degrees centigrade. 

E. Example: Graphical representation of measurements as a distribu
tion. Snppose that a certain length is measured 51 times. The results 
which might be obtained are shown in Table 1. In the first column appear 
the various nlcasured values and in the second column the number of times 
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TABLE I 

I No. of ox ~ 
x occurrences mx x-x mloxl (oX)2 m(ox)2 

(em) m (em) (em) (em) (em2) (em)2 ---
1.01 1 1.01 -0.04 0.04 16 X 10-4 16 X 10-4 

1.02 3 3.06 -0.03 0.09 9 27 
1.03 6 6.18 -0.02 0.12 4 24 
1.04 8 8.32 -0.01 0.08 1 8 
1.05 10 10.50 0.00 0.00 0 0 
1.06 7 7.42 +0.01 0.07 1 7 
1.07 8 8.56 +0.02 0.16 4 32 
1.08 4 4.32 +0.03 0.12 9 36 
1.09 3 3.27 +0.04 0.12 16 48 
1.10 0 0.00 +0.05 0.00 25 0 
1.11 1 1.11 +0.06 0.06 36 36 

51 53.75 0.86 234 X 10-4 

51 51 51 

~k~L;m ~ L;xn ~ L:loxnl ~ L;(OXn)2 
n=l n=l n=l 

Average: 

k 51 
1.054 em. 

Average deviation: 

L;~~lloXnl 0.86 016 
a ~ k ~ 51 ~ O. 8 em. 

Fractional average deviation: 

a 0.0168 01 
A ~ ;; ~ 1.054 ~ 0.0160 or 1.6/0. 

Standard deviation: 

1234 X 10-
4 ~ 0021 'Ii 50 . 6 em. 

Fractional standard deviation: 

8 0.0216 
S ~ ;; ~ 1.054 ~ 0.0204 or 2.0%. 

L 



RAXDOM ERHOR OF A MEASURED QUANTITY 13 

each has occurred. For example, in the third row we note the value 1.03 cm, 
and to the right in the next column the number 6. This means that 6 of 
the 51 measurements yielded 1.03 cm. 

It is to be noted that both:l:xn = 53.75 cm and x = 1.054 em are given 
to four significant figures, although the individual measurements are given 
only to three. The justification is as follows. Since the individual values are 
significant to three figures, the last digits in the mx column are at least 
partially significant. Therefore the grand total will be at least partially 
significant to the nearest 0.01 cm. Such a procedure is plausible because the 
average value x is more precise than any of the individual values and there
fore requires more significant figures than the individual values. (For com
puting the deviations in Table I, a valuc of x = 1.05 cm was used.) 

Note that from the directly computed values we obtain the ratio 

s 
a 

0.0216 
0.0168 

1.29, 

instead of the 1.25 predicted by theory. This discrepancy is due in part to 
the fact that the individual deviations are known to only one significant 
figure, and therefore the precision to which s and a are known is limited. 
Also, only 51 measurements were employed in this calculation ",hile the 
theory is based upon the assumption of a very large number, ideally infinite. 

The data in Table I may be represented graphically as shown in Fig. 1. 
We imagine the range of values of x to be divided into equal intervals L1x, 
and plot the number of values of x lying in the interval versus the average 
value of x within that interval. Thus the six measurements of 1.03 might be 
thought of as lying in an O.01-cm interval centered upon 1.03 cm; that is, 
between 1.025 and 1.035 em. Thus we plot 6 on our vertical scale versus 
1.03 cm on our horizontal scale. Since with a small number (such as 51) 
these points--do not lie on a smooth curve, it is conventional to represent 
such a plot by a histogram consisting of a series of horizontal lines of length 
L1x centered upon the individual points, the ends of adjacent horizontal lines 
being connected by vertical lines of appropriate length. 

If we were to make another 51 measurements and plot the corresponding 
graph, we would, in general, get a graph which does not coincide -with the 
one given. In ot.her ,yards, in this second set of measurements we might not 
have obtained six measurements of l.Oa em, but five, or seven, or even 
eight. Thus this distribution is subject to what arc called stalisticalfluctua
tions. If we had repeated this process with 500 nleasurements, we would 
have found t.hat t-he relath'c fluctuations became smaller, and with 5000 
they would have becn smaller still. At the same time, if we improved our 
measuring technique to get more significant figures we could use smaller 
values of the interval ilx. Thus we can conclude that as the number of 
measurements is indefinitely increased while the width of the intervals LlX 
is steadily deereased, the hi::;togram approaches a smooth curve. In Section 
IV-G ",e shall denlop a thcory that gi\'es the shape of thc smooth curve 
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which the histograms approach under these conditions. The smooth curve 
plotted in Fig. 1 has been calculated using this theory. 

It is to be observed that this theoretical curve has a maximum at the 
average i and is symmetrical about this maximum. In fact, the funda
mental assumptions used in the theory are just these: that the maximum 
should occur at the average and that the eurve should be symmetrical. 
That is, values of x less than x and values greater than x are equally likely. 
Such assumptions arc generally valid when the curve is relatively narrow; 
that is, when the fractional deviations S and A are not greater than a few 
percent, as is usual in most circumstances which the student is likely to en
counter. This type of curve is called a Gauss error curve or a normal error 
curve. In nuclear physics, however, the student may meet some measure
ments which do not comply with these assumptions and therefore do not 
conform to a Gauss or normal error law but to another law called the 
Poisson law. (See Section VII.) 

For dealing with the theoretical curve, it is more convenient to consider 
the distribution as plotted against ox rather than against x. Since ox = 
x - x, this procedure merely consists in moving the origin from x = 0 to 
x = x and leaves the shape of the graph unchanged. Shown at the bottom 
of Fig. 1 is a second horizontal axis which is used in this case. 

For reference there are shown on Fig. 1 the following points: A, where 
x = x - a; A', where x = x + a; S, where x = x - s; Sf, where 
x = x + s. Also are shown four points P, pI, 0, and 0', whose significance 
will be discussed later. 

In Fig. 1 we have partiaJJy illnstrated the facts that the measurements of 
an experimental quantity may be represented graphieaJJy as a distribution 
and furthermore that this distribution approaches a definite theoretical 

.. 
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shape as the number of measurements becomes very large. Often we do not 
wish to take the trouble to actually plot such a distribution, or to find a 
numerical formula corresponding to the theoretical curve, but we retain 
these as important concepts. The relative width of the theoretical curve, 
whether actually drawn or merely imagined, is an indication of the precision 
of the measurements. After we have derived an analytical expression for 
the theoretical curve, we shall see that its width may be represented in 
terms of a single parameter called the precision index. Still later we shall 
show that the precision index is simply related to the standard and average 
deviations and that therefore these quantities acquire additional signifi
cance, since they may also be used indirectly to specify the sharpness of the 
maximum. Furthermore, as a by-product, we shall obtain the theoretical 
value of the ratio of the standard deviation to the average deviation. 
Finally, from the analytical expression for the theoretical curve we shall 
show that it is possible to set up a procedure for deciding which data should 
be rejected as being unreliable. The sections immediately to follow will be 
devoted to the derivation of this expression for the theoretical curve, and to 
its applications. 

F. Probability. If, in our example, we should ask what value would be 
obtained if we should make another (52nd) determination, it is obvious that 
we cannot predict the exact value that will occur. All that we can say is 
that values near the average of 1.054 cm are much more likely to occur than 
any others. Whereas we cannot predict by theory the value another 
measurement will yield, we can say something about the "chance" that 
some particular value will be obtained. "Chance," when expressed quanti
tatively in mathematical language, is called probability, and has the follow
ing definition. 

If the number of ways in which an event may happen or fail to happen 
can be analyzed into c successes and b failures, each equally likely to occur, 
the probability of success in a single trial is 

c 
TV=c+b' 

and the probability of failure is 

b Q=--. 
c+b 

(9) 

(10) 

It follows from this definition of probability that the magnitude of a 
probability (such as TV or Q) can never exceed unity; that a probability of 
unity is to be interpreted as "certainty"; and that the sum of the probabili
ties of all possible events must be equal to unity. In a simple situation in
volving two types of event (ltsuccess" and "failure") 

TV+Q=1. (11) 
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EXAMPLE. A box contains 10 white balls and 15 black balls of identical size and 
weight. What would be the probability, in a dark room, that a white ball would 
be withdrawn from the box on the first try? There are 10 possible ways of success 
(withdrawing a white ball) and 15 possible ways of failure (withdrawing a black 
ball). Thus, c ~ 10, b ~ 15, and lV ~ 10/(10 + 15) ~ 0.4 or 40%, and 
consequently Q ~ 0.6 or 60%. 

Another interpretation of probability is to imagine that the situation 
leading to an event is repeated a very great number of times. Then W 
would be the fraction of the total number of times which turned out to be 
successes, and Q would be the fraction which turned out to be failures. 
Strictly speaking, this would be true only if the number of repetitions was 
very large indeed (approaching infinity). For a finite number of repetitions, 
the fraction of observed successes may differ from W because of statistical 
fluctuations. As the number of repetitions increases, the agreement be
tween the observed and the theoretical results improves. 

The probability that a combination of two events W occurs is equal to 
the product of the separate probabilities WI and W 2, provided that the two 
events are completely independent. 

EXAMPLE. Suppose that in addition to our box with 10 white balls and 15 black 
balls, we have a second box with 20 white balls and 30 black balls. What would bc 
the probability that we would obtain two white balls on withdrawing one ball 
from each box? 

By Eq. (9), W 1 ~ lV 2 ~ 0.4. Then W ~ lVIlV2 ~ (0.4)2 ~ 0.16. In other 
words, in a large number of trials, 0.4 of the times we would be successful in 
drawing a white ball from the first box, and then only 0.4 of these preliminary 
successes would be followed by success at the second box. If we had withdrawn 
both balls from the box containing 10 white and 15 black balls, however, W 
would have had a different value, because 1112 is not 0.4. Once we have withdrawn 
one white ball, only 9 are left. Thus W2 ~ 9/(9 + 15) ~ 3/8 ~ 0.375. Then 
lV ~ (0.4)(0.375) ~ 0.15. 

It can be inferred that the probability that more than two events take 
place in combination is the product of the probabilities of the separate 
events, provided that they are independent. 

G. Derivation of the Gauss or "normal" error law. In the following 
derivation it will be convenient to employ a change of notation. We shall 
use z to denote a deviation in x (previously denoted by ox), since we shall 
have occasion to calculate derivatives with respect to this quantity. Thus, 
Zl = Xl - X, Z2 = X2 - x) Z3 = X3 - X, and, in general, Zn = Xn - X. 
Also, we note that a determination may yield a value in the interval be
tween x and x + AX, or a deviation between Z and Z + Az. From the 
definition of z, an interval Ax wide in X corresponds to an interval AZ of 
equal width in z (i.e., ,;x = ';z). 

From Fig. 1, we find that the probability that one determination yields a 
value in the range of deviation from z to z + ,;z depends on two factors: (1) 
the width of the interval M, and (2) some unknown function of z, which we 
shall denote by f(z). This function is assumed to have a maximum at 

1 
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z = 0 (x = x), and approaches zero when z becomes very large in either a 
positive or negative sense. The dependence upon the interval is obvious. In 
our example, we see that in a single interval of 0.01 cm, from 1.055 to 1.065 
cm, we have 7 measurements, and in the interval of 0.01 cm between 1.065 
and 1.075 cm we have 8 measurements. If we divide our data into intervals 
of 0.02 cm each, such as from 1.055 to 1.075 cm, we would have 15 measure
ments within the interval or, on the average, twice as many as in one of 
these 0.01 cm intervals. 

The function 1(z) , sometimes called the probability amplitude, is defined 
as the probability of obtaining a deviation lying in a unit interval centered 
at z. Since the probability is, in general, proportional to 1(z) and I>z, it is 
proportional to their product. The probability that a value lies in an 
interval of width D.z centered at z is 

W = 1(z) I>z. 

If we make k measurements, neglecting statistical fluctuations, the number 
found to lie in this range is given by 

kW = k1(z) D.z. (12) 

We shall determine the analytical form of 1(z) according to the method 
of Reddick and Miller. * We assume that a large number of values 
Xi) X2, ... , Xk have been obtained by experiment. These have deviations 
ZlJ Z2, .•. ) Zk, respectively. If the range of values of z is divided into in
tervals I>z small enough so that not more than one value occurs in each 
interval, we may say that 

1(ZI) I>z = probability of the deviation z" 
1(Z2) D.z = probability of the deviation Zz, 

1(zn) I>z = probability of the deviation z., 

1(z,) D.z = probability of the deviation Zk. 

Therefore the probability of this combination of deviations is 

W = 1(ZI)1(zz) ... 1(z,) (I>z) k, 

or, taking the logarithm of both sides, 

(13) 

In W = In 1(ZI) + In 1(Z2) + ... + In 1(Zk) + kIn (I>z). (14) 

*Op. cit., p. 357 (see list of references). 
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We choose the function fez) subject to the following restrictions: 
(1) The total number of deviations over the entire r'l:nge of possible 

values of z (from - 00 to +00) must be equal to the total number of 
measurements k or, by use of Eq. (12), 

J
+OO 

Ie = Ie _00 f(z)dz, 

or 

1 = L:oo 

f(z)dz. (15) 

Equation (15) is a mathematical expression of our previous statement that 
the sum of all possible probabilities must be unity (certainty). 

(2) We assume that the most probable value x is the average of the 
measured values. From the definition of average, it follows that 

k 

Z1 + Z2 + ... + Zk = I: Zn = O. 
u=! 

(16) 

(3) When x is the average of the measured values, W (and In W) becomes 
a maximum. Therefore 

d(ln W) = 0 
dx . 

The probability W depends indirectly on x through the z's. By use of in
direct differentiation, from Eq. (14), 

d(ln W) = d(ln W) dZ1 + d(ln W) dZ 2 + ... + d(ln W) dZk 
dx dZ1 dx dZ2 dx iiZk dx 

= df(z1)/dz1 dz 1 + df(zz)/dz2 <0.2. + ... + df(zk)/dzk dZk 
f(z1) dx f(z2) dx f(zk) dx 

= O. (17) 

The last term in Eq. (14) is a constant, and its derivative is zero. Since 
each term involves only one z, we may write Eq. (17) as 

k 

I: .p(zn) = .p(Z1) + .p(Z2) + ... + .p(z.) = 0, (18) 
n=l 

wherein a typical term is defined by 

.p( ) = df(zn)/dzn . 
Zn f(zn) (19) 

1 
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In arriving at Eq. (18) from Eq. (17), we have employed the fact that 
from the definition of z [Eq. (1)], 

dz, dzz dZk 
dx = dx = ... = di = -1. 

Next we assume, in line with the common technique of solving differential 
equations, that </>(z) is given by a power series: 

</>(z) = ao + a,z + azzz + a3z3 + ... , (20) 

where the a's are constants to be determined by substituting the expres
sion for </>(z) from Eq. (20) into Eq. (18). 

</>(z,) = ao + a,z, + azzi + a3z~ + ... , 
</>(zz) = ao + a,zz + azz~ + aaz~ + ... , 

k k k k 

Sum = :E </>(zn) = kao + a, :E Zn + az :E z; + aa :E z:: + ... 
11.=1 

= O. (21) 

Equation (21) can be satisfied if each of the individual terms is equal to 
zero. This may be accomplished by having all of the a's except a, equal to 
zero. From Eq. (16), L:~~, Zn = 0, and thus a, need not be equal to zero. 
All the other a's must be equal to zero, however, in order to satisfy Eq. (21) 
even when the z's vary because of statistical fluctuations. By use of Eqs. 
(19) and (20), 

or 

Upon integration, 

or 

A.( ) _ dJ(z)/dz _ 
'Y z - -iW - a,z, 

df(z) 
J(z) = a,z dz. 

z a,z 
Inf(z) = 2+lnC, 

where C is a constant of integration. 

(22) 



20 THEORY OF ERROR 

Since J(z) is known to have a maximum at z = 0, and since we expect 
J(z) to approach zero for z very large in either a positive or negative sense, 
al must be negative. Thus, it is appropriate to replace it by a constant h 
defined by 

yielding , , 
J(z) = Ce- h 

, • (23) 

The constant C is evaluated by substituting the expression for J(z) from 
Eq. (23) into Eq. (15), and performing the indicated integration. This in
tegral must be evaluated by special methods. * The result is that C = hi y:;r, 
and the probability that a value occurs with a' deviation from z to z + Il.z is 

(24) 

The \lumber of measurements with this deviation, on the average (neglect
ing statistical fluctuations), is 

kJ(z)ll.z = ::; e-h
',' Il.z. (25) 

The graph of J(z) vs. z is sketched in Fig. 2. From this figure, we see that a 
large value of h yields a high, narrow curve, which corresponds to an experi
ment of high precision. A small value of h yields a low, wide curve, which 
corresponds to an experiment of low precision. Consequently, h is called 
the precision index. The geometrical interpretation of Eq. (15) is that the 
area under any such curve must be unity, and thus the areas under all such 
curves must be the same. 

The probability of obtaining a measurement with a deviation lying in the 
range from -Z to +Z, where Z is some arbitrarily chosen limit, is found by 
integrating Eq. (24) from -Z to +Z; because of the symmetry of the in
tegrand about z = 0, this integral is twice the integral from zero to +Z. 
Except for the particular case of the definite integral from zero to infinity, 
this integral cannot be evaluated in closed form, but values can be obtained 
to any desired accuracy by numerical integration or by approximation 
methods. Such values may be found in almost all standard compilations of 
mathematical tables. For such a table to be independent of the particular 
value of h, it is necessary to make a transformation of the variable. Some 

*Reddick and-Miller, op. cit., p. 3'59. See also A. G. Worthing and J. Geffner, 
Treatment of Experimental Data, John vViley and Sons, Inc., New York (1943), 
p.155. This integral is listed as No. 492 by B. O. Pierce, A Short Table of Integrals, 
Ginn and Co., Boston (1929). 

+ 
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fez) 

FIGum; 2. 

compilations employ the variable t = hz, while others, utilizing a relation 
between h and the standard deviation 8 derived below as Eq. (29), employ 
the variable t' = Z/8. Then the probability of obtaining a deviation having 
a magnitude of Z or smaller is given by 

jz 2 jZ " 
TV -z.z = 2 0 J(z)dz = v'; 0 e-

h
, (hdz) 

.. - e- t dt =2. jt=hZ 2 

v'; 0 
(26) 

(26A) 

Data concerning this integral may also be expressed in terms of the 
probability of obtaining a deviation of magnitude equal to or greater than 
Z, which, of course, is 1 - TV -z.z. Some values of this quantity will be 
given later in Table II. 

H. Probable error. Relation between the various quantities used to 
express precision. 

(1) Probable error. The probable error p is that magnitude of deviation 
whose probability of being exceeded is one-half. In other words, p is that 
value of Z which, when substituted into Eq. (26), yields TV -z.z = Jr. This 
consideration gives 

0.4769 
p=--' 

h 
(27) 

The geometrical interpretation of the meaning of p is given in Fig. 3. 
Vertical lines drawn under the curveJ(z) vs. z at the points z = p and z = 
-p divide the area under the curve into three parts. The central part 
(crosshatched) is equal to the sum of t.he other two. In Fig. 1, the lines OP 
and D'P' have the same meaning. 
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FIGURE 3. 

(2) Standard deviation. The probable error p and the precision index h 
may be evaluated in terms of the standard deviation 8 or the average devia
tion a. The number of values between z and z + L>z is given by Eq. (25). 
Each of these contributes an amount Z2 to the sum of the squares of the de
viations. The derivation of the Gauss error law has been based upon the 
implication of an infinite number of measurements; hence the Gaussian 
distribution is a property of the universe and not of the sample. Therefore, 
in accord with the definition given in Section IV-B, we can determine the 
standard deviation by computing the sum of the squares of the deviations 
by integration and then dividing by the number of measurements k. This 
division by k cancels the factor of " contained in Eq. (25), and 

8 2 = . r Z2e-h, dz = - . r ze-h
, (-2h2z dz). h f~ , , 1 J~ , , 

V7r -COl hV7r 0 

On integration by parts, 

(28) 

The first term on the right vanishes at both limits. The second may be 
evaluated by means of the tables, as it involves the same integral as in Eq. 
(26). The result is 

8= 
1 

hV2 
(29) 

(3) Average deviation. By an analogous procedure, the sum of the devia
tions without regard to sign and the average deviation a may be calculated. 
The contribution of all the values with negative deviations is equal to that 
of all the values with positive deviations. By reference to Eqs. (6) and (25), 

i 
1 
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a = 2 zj(z)dz = .;- ze-h 
, dz = .;- . 

/

00 2h /00 , , 1 

o V1f 0 hV7r 
(30) 

Equations (27), (29), and (30) may be 'summarized by a multiple pro
portionality;* 

Thus, 
p;a;8;I/h = 0.477;0.564;0.707;1.000. 

E = 0.477 = 06745 
8 0.707 . , 

a result which is often quoted and used for determining p. Also, 

8 

a 
0.707 
0.564 

as has been mentioned in Section IV-E. 

1.25, 

(31) 

(3IA) 

(32) 

The quantities 8 and a are obtained directly by analysis of the data in the 
manner illustrated, while hand p are calculated from 8 or a by means of 
Eq. (31). 

In the example given in Table I; 

p = 0.67458 = 0.6745 X 0.0210 = 0.0146 cm [by Eq. (3IA)] 

and 

[by Eq. (31)] 

The equation for the curve in Fig. I is obtained by SUbstituting the above 
value of h and the values Ie = 51 and M = 0.01 cminto Eq. (25), yieldiug 

I. Rejection of data. When a measurement is repeated several times, 
quite frequently most of the resulting values arc found to lie close together 
while one or two others differ very much from this group. The question 
immediately arises as to whether these apparently anomalous measure
ments should be rejected. 

In cases where physical disturbances were known to be present when the 
questionable measurements were made, obviously they should be rejected. 

*'Worthing and Geffner, op. cit., p. 158. 
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In fact, even if the data obtained during a disturbance appear to agree with 
others, they should be rejected. 

In other situations where no disturbances were known to be present, it is 
highly controvcrsial whether the data should be rejected. Some observers 
contend that all such data should be retained. Ideally, so many additional 
measurements should be made that retaining or rejecting the dubious 
measurements has little effect on the average value, but unfortunately such 
a procedure is often impractical. 

Other observers are inclined to reject the questionable measurements on 
the basis that the probability of obtaining such large deviations is so 
negligible that they mnst have resulted from some abnormal cause. Per
haps there were physical disturbances that were not detected. In an electri
cal expcriment, the line voltage may have dropped briefly, but the observer, 
writing in his notebook, may not have seen the meters flicker. Alternatively, 
the observer may have made outright blunders in reading the instruments. 

While there is considerable justification for the latter point of view, it 
presents at least two difficulties. In the first place, there is no clear-cut 
basis for deciding just how small the probability must be to be considered 
negligible, and thus any specific criterion for rejecting data is a matter of 
debate. In the second place, if some definite criterion is adopted, and then 
applied without discretion, it may lead to an unreasonable situation. In 
applying it to the original set of data, the observer rejects some of the 
measurements. He may then suppose that some of the remaining discrep
ancies are also due to abnormal causes, and apply the criterion to the re
maining data, and rejecting other measurements. This reasoning leads to 
successive applications, each resulting in rejections, until ultimately nearly 
all of the data have been reject.ed. Obviously, any such repetitive appliea-

TABLE II 

Probability of obtaining a deviation greater than .'Some preassigned 
magnitude 

Deviation relative 
to standard deviation 

It'l ~ IZI/s 

0.6745 ~ p/s 
0.707 
0.80 a/s 
1.0 
1.41 l/sh 
1.5 
2.0 
2.5 
3.0 

Probability 
1 - W-z .z 

0.50 
0.48 
0.43 
0.32 
0.16 
0.13 
0.05 
0.012 
0.003 
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tion of a criterion is ridiculous. Most observers who employ such a pro
cedure at all apply it only to the original data. 

The Gauss error law provides a rational basis for setting up a criterion, if 
one is to be used. If the probability of obtaining deviations greater in 
magnitude than some limit Izl is negligible compared to 11k, where k is the 
number of measurements, then all measurements with deviations greater in 
magnitude than Izl are to be rejected. The probability of obtaining a devia
tion greater than Izl is 1 - W -z.z, where W -z.z is given by Eq. (26). 
The quantitative definition of the word "negligible" is a matter of opinion 
which will be left to the reader. However, for his convenience some 
representative values of 1 - W -z.z as a function of the deviation are 
given in Table II. Note that this probability decreases very rapidly as Izi 
increases beyond s. 

While the Gauss error law provides a simple method of rejecting data 
rationally, its use in this application is only approximately valid. More 
valid but more complicated methods exist. The Gaussian distribution is a 
property of the universe of measurements and only approximates the dis
tribution of a particular sample, and with the usual case of small samples 
this approximation is not very good. A better method involves the use of 
the statistics of small samples, a subject which is beyond the scope of this 
book. This method is discussed in the paper by Thompson. * 

ow. R. Thompson, Annals of Mathematical Statistics 6,214 (1935). 



V. PROPAGATION OF ERROR 

Let us suppose that a quantity V is to be computed from two measured 
quantities x and y by means of a theoretical formula. In other words, 
V = Vex, v). Then V is in error by an amount dV as a result of the errors 
dx and dy in the measured quantities x and y. (The quantities dV, dx, and 
dy must be comparable. If one represents a probable error, the others must 
also. If one represents an average deviation, the others must be average 
deviations, etc.) The relation between dV and dx and dy may be deter
mined from differential calculus and other methods we have previously 
employed. There are two limiting situations. Usually the error dx has no 
relation to the error dy, and they are said to be independent. For example, 
suppose that we determine the speed of an object by observing the time it 
takes to travel a measured distance. There is no reason to believe that if 
the time measurement is too large, the distance measurement is necessarily 
also too large. On the other hand, situations may exist where the errors are 
related, and these are called nonindependent. For example, suppose that an 
area is determined by measuring the length and width of a rectangle with a 
tape measure which has stretched since its original calibration. Obviously, 
the measurements of both length and width will then be too small. Some
times both independent and nonindependent errors are present. 

In the case of independent errors, there is clearly some possibility of com
pensation. When the error in x causes V to be too large, the error in y may 
cause it to be too small. Thus we should expect that, on the average, the 
total error of V will be algebraically less than the sum of the separate con
tributions of ax and dy. We shall soon see that a logical way of adding the 
separate contributions is to take the square root of the sum of their squares, 
and this method does have the expected compensating property. On the 
other hand, there is no such possibility of compensation for nonindependent 
errors, and therefore these contributions do add algebraically. 

In addition to independent and nonindependent errors there is a third 
class known as correlated errors, in which the deviations of x are systematic
ally related to those of y. The distinction between independent and corre
lated errors may be illustrated by the following two situations. On the one 
hand, we might determine the area of a rectangle rapidly, under constant 
conditions, by measuring the length x and the width y ten times each with 
the same tape. If we were to consider the sum of the products of the devia
tions, J;oxnoYn, the only logical pairing of individual deviations of x with 
individual deviations of Y would be a completely random one, and we would 
expect on the average that the sum would be zero. Then the errors associ
ated with these deviations would be completely independent. In addition 

26 
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there would be some nonindependent error; for example, if the temperature 
were not known very well, there would be error in the correction for the 
expansion of the tape, which would affect both measurements in the same 
way. The presence of this type of error cannot be detected by an analysis of 
the deviations. 

On the other hand, suppose we were to make one measurement of the 
length and one of the width each day for ten days, and suppose that there 
were a considerable variation in termperature. If we had proper informa
tion, we could correct the individual measurements for the effect of the ex
pansion to a very high precision; in this case the deviations would be 
independent, and on the average no larger than if all the measurements 
were made at the same time. However, if for some reason we should ignore 
the effect of variation of temperature, the deviations would be larger on the 
average. Furthermore, the situation suggests that we should pair a measure
ment of width with the one of length made on the same day. Then on the 
hotter days 5x and 5y would both tend to be negative and on the cooler 
ones they would both tend to be positive. Hence positive terms in the sum 
L 5xn 5Yn would be more likely to occur than negative ones, and the sum 
would not be zero. (In the limit where the expansion effects entirely 
predominate over the completely random ones, the sum would be approxi
mately equal to s.su.) Under these conditons the errors in x and y would be 
said to correlated. It should be noted that if the variations in temperature 
were small compared with the difference between the average temperature 
and the temperature at which the tape was calibrated, there would also be 
some purely nonindependent error associated with the error in correction 
of the average temperature. 

In a sense, correlated errors are not an intrinsically new class of errors, 
but rather errors whose independent and nonindependent portions cannot 
be separated. The method for their addition is intermediate between the 
methods for independent and nonindependent errors: in dealing with corre
lated errors it is necessary to define the correlation coefficient PZlI' which is 
the average value of the sum L5xn5Yn for the universes of measurements of 
x and y, divided by S.Su' In the sum the deviations are paired in accordance 
with some known or suspected correlation. Advanced books on statistics 
show that the best estimate of P.y from a finite sample of k pairs of measure
ments of x and y is given by 

Pxy = (33) 

or 

(33A) 

In the case of purely independent errors, of course, P:e1J is equal to zero, 
while for completely correlated errOl'S P'u has the value of either +1 or-l, 
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Purely independent errors are much more common than correlated ones, 
and they may usually be recognized as being independentfrom the physical 
context. In such cases PZII may be set equal to zero a prior~'. In cases where 
correlation is known or suspected to exist it is necessary to calculate PX/J' 

A. General rule for combining independent and correlated errors. Let 
us suppose that we make a very large number I< of measurements of 
both x and y. mtimately we shall let I< become infinite, so that our sample 
will include the entire universes of measurements of x and y. If we pair the 
measurements of x and y in accordance with some known or suspected 
correlation, we may compute Jc values of V: 

v, = V(x" y,), V. = V.(x., Y.), ... , Vn = V(Xn Yn), ... , 

V. = V(x., y.). 

The measurements of x and of y may be averaged in the usual way to ob
tain x and y. We shall make the fundamental assumption that the best 
possible (most probable) value of V is V(x, y). In general, each value Vn 
differs from V(x, y) by some amount 

oVn = V. - V(x, y), (34A) 

which we shall call the deviation of V.. From the differential calculus, to 
the first order of approximation, 

ilV ilV 
oV. = ilx ox. + ily "y., (34B) 

where ox. = x. - x and 0Yn = y. - y, respectively, are the deviations 
of x. and y.. The average value of OV = (L:~~, oV.)/1< = 0, since 
L:~~, ox. = 0 and L:~~, oY. = O. Therefore, to a first approximation, 
which in ordinary cases is valid, 

i7 = V(x, y). (35) 

In Eq. (34A) we have defined oVn in a manner not strictly consistent with 
the way in which we defined ox. and oy. in Eq. (I). However, using Eq. 
(35), we see that these two possible definitions are equivalent in most 
circumstances. 

Next let us compute the average value of the slIm of the squares of the 
deviations by the use of Eq. (34B): 

L:~_, (OVn)2 = (ilV)2 L:~_, (ox.)' + (ilV)' L:!_, (oYn)2 
Ie ilx I< ily Ie 

+ 2 (ilV) (av) L:ft-. (ox.oY.). 
ax ily Ie 

(36) 

. 
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If we take the square root of each side and take the limit as " becomes 
infinite, then the quantity on the left becomes, by definition, the standard 
deviation of V, which we denote by Bv. The various sums which appear on 
the right side are expressible in terms of the standard deviations B. and B. 

and the correlation coefficient Pxy, by use of their respective definitions. 
IIence . 

'(aV)2 2 (av)2 2 (a V) (av) 
Sv = \I ax Sx + ay 8 y + 2pxy ax ay SxSy. (37) 

With a finite number of measurements, we obtain the best estimate of 8v 

by substituting into Eq. (37) the best estimates of B. and 8 y from Eq. (5) or 
Eq. (5A), and the best estimate of P.y from Eq. (33) or Eq. (33A). In the 
case of correlated errors we normally have the same number of measure
ments of x as of y. With measurements known a priori to be independent, 
pxy is set equal to zero; in this case, in general, the number of measurements 
of x differs from the number of measurements of y. 

Up to this point we have assumed that V is a function of only two meas
ured quantities x and y. Of course, V may be a function of any number 
of measured quantities. The generalization of Eq. (37) to include the con
tributions of these quantities is obvious. It is merely necessary to include 
under the radical on the right additional terms of the same types as are 
already present but pertaining to the other quantities. For example, if a 
third quantity w is involved, the following terms would be added: 

(av)2 2 (av) (av) (av) (av) aw Sw + 2pwx aw ax 8 w Sx + 2pwy away SwSy. 

The justification for this process may be seen by reexamining the previous 
derivation with the inclusion of these quantities in mind. Any of the special 
rules for combining errors which are based upon Eq. (37) may be generalized 
to include other measured quantities in a similar way. 

We expect the probable errors, average deviations, and reciprocals of 
precision indices of V, x, and y to be in the ratios to their respective stand
ard deviations given by Eq. (31). Therefore the best estimate of the prob
able error of V is obtained by replacing Bv, s., and By in Eq. (37) by pv, 
px, and PII; and similarly for the average deviation av and the reciprocal of 
the precision index (l/hv). 

B. The standard deviation of an average. Up to this point we have 
been concerned with estimating the standard deviation of a single measure
ment. In other words, in Section IV we have developed a procedure 
whereby from the analysis of k observations we estimate the errol' we would 
have if we had made only one observation. This, of course, is a peculiar bit 
of hindsight. Having the" measurements, \Ye know that the best available 
value is the average X, and therefore we are mainly interested in the estimate 
of the error of x. 
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We could, of course, make several sets of lc readings, compute their 
respective averages, and then apply the previously developed methods to 
these averages. We could also compute the average of these averages, 
which would be still more precise, and inquire into its error. This reasoning 
could go on indefinitely without coming to a logical end. Fortunately, by 
application of Eq. (37) we can deduce a procedure for estimating the error 
in the average of k measured values without having to repeat the set of 
measurements. 

We make use of the fact that the average x is a quantity computed from 
the measured quantities Xl, X2, ... ,Xk. Thus, for this purpose, V is to be 
replaced by x. By definition, 

Therefore, 

x = ~ (Xl + X2 + ... + Xn + ... + Xk). 

ax 
aX2 

(38) 

(39) 

Since we are considering only the random errors in the measurements, the 
xn's may be considered independent; and their mutual correlation coeffi
cients placed equal to zero. Then by Eq. (37), modified to include the 
effects of k quantities, the standard deviation of the average is 

{I 2 2 2 2) 8 
8. = \fle2 (8x, + 8" + ... + 8" + ... 8X k = v'k' (40) 

since each 8xn = 8 and the number of them is k. Thus the standard devia
tion of the average is equal to the standard deviation of an individual 
measurement, divided by the square root of the lIlumber of the independent 
measurements. In other words, the precision improves in proportion to the 
square root of the number of measurements in the sample. This is a funda
mental principle of statistics. In Eq. (85), which will follow, we shall show 
that the same principle applies when the number of observations is the 
random variable. 

The standard deviation 8, which appears in Eq. (40), can be evaluated by 
using Eq. (5) or Eq. (5A). We are now in a position to derive these equa
tions, which were given without proof. We recall that 8 is the rms deviation 
about the universe average, which we shall denote by xu. This quantity 
may be computed from Eq. (4), after evaluating L~~l (5xn) 2 from Eq. (2) 
with x replaced by xu. If, to avoid confusion, we now denote the sample 
average by Xk, then from Eq. (1) the quantity L~'=l X., which appears in 
the second term of Eq. (2), equals leXk. Making these substitutions and 
squaring, we obtain 

L~ 1 x~ 
Ie (41) 

ill 
',~ 
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The square of the rms deviation about the sample average is, from Eq. 
(4A) , 

(41A) 

Subtracting Eq. (41A) from Eq. (41), we obtain 

( - - )2 = Xk - Xt~ . (4IB) 

The quantity inside the parentheses of Eq. (41B) is the deviation of Xk 
about Xu. We estimate this to be equal to sx, which may be expressed in 
terms of 8 by means of Eq. (40). We may then solve for s in terms of 8', 

with the result that 

8=8'~ Ie • 
Ie - 1 

(42) 

When the expressions for 8' from Eqs. (4) and (4A) are substituted into Eq. 
(42) we obtain, respectively, Eqs. (5) and (5A), which are the desired 
results. 

Logically, we expect the averages X and fi to have the same degree of 
correlation as do individual pairs of measurements. In fact, it is shown in 
advanced treatises that PXY = P.y' Therefore we expect the standard 
deviations of averages to combine in the same way as the standard devia
tions of individual measuremeuts. (This statement is especially plausible in 
the case where we have Ie measurements of both x and y. Then .. 18. = 
syl8y = 1/vik, and therefore we expect also that sylBv = 1/vk.) 
Accordingly we may write 

'(a V)2 2 (a V)2 2 (a v) (a v) 8y = '\j ax 8" + ay 8y + 2p.y -ax ay 8,,8y . (43) 

C. Method of combining nonindependent errors. If the errors of x and y 
are due to some common cause, the error of V is given directly by the 
differential calculus: 

av aV dV = ax dx + ay dy. (44) 

Note that for the case of completely correlated errors (PXy = 1), Eq. (37) 
reduces to the same mathematical form as Eq. (44). However, completely 
correlated and nonindependent errors are of very different origins. Com
pletely correlated errors are associated with the individual measurements of 
x and y and could be detected by computing the correlation coefficient from 
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the deviations and finding that it equals unity. Nonindependent errors are 
due to external causes and cannot be detected by a study of the deviations. 
For example, in the first determination of the area of a rectangle discussed 
in the introductory paragraphs of this chapter, the nonindependent errors 
are those associated with the calibration of the tape and the correction for 
thermal expansion. These may random in nature, so that they can be 
evaluated by application of the previously developed theory to the calibra
tion or correction process, or they may be of systematic nature, so that they 
can only be estimated, as will be discussed in further detail in Section V-F. 

For these reasons, it is inappropriate to denote the nonindependent 
errors by the symbols BV, Bx, and By. Instead we have used dV, dx, and dy 
in Eq. (44). 

Note that nonindependent and completely correlated errors are combined 
by algebraic addition. On the other hand, completely independent errors 
(PXy = 0) are combined by taking the square root of the sum of their 
squares, as we see from Eq. (37). 

When both nonindependent and correlated errors are present, they can 
be computed from Eqs. (44) and (37), respectively. However, these groups 
of errors are completely independent of each other: the total error in V is 
found by calculating V dV2 + B~. 
D. Graphical addition of errors. Equation (37) may be simply inter
preted in terms of the addition of vectors (i.e. the law of cosines for the 
triangle). It can be seen that BV is just the resultant of the vectors 
(aV /aX)Bx and (aV/aY)By, and Pxy is equal to minus the cosine of the angle 
between them. 

Two cases of special interest are illustrated in Fig. 4. In (a) is shown the 
situation of completely independent errors (PXy = 0), in which the original 
vectors are at right angles, while in (b) is shown that of nonindependent 
(and also completely correlated) errors, in which the vectors are parallel. 

It is well known that when one arm of a right triangle is short compared 
with the other, the hypotenuse is not much longer than the long arm, and 
variations of the short arm have little effect upon the hypotenuse. There
fore, when one independent error is appreciably smaller than the other, it 
may generally be neglected; it would be a waste of time to attempt to im
prove the measurement of the quantity to which this term belongs. These 

s~J:~ Sy ___ ....:d!CV:....-__ _ 

~ . . 
av aV dx av d a-x s", ax 3y Y 

(a) (b) 

FIG. 4. (a) Graphical addition of completcly independent crrors. (b) Graphi
cal addition of nonindepcndcnt errors. 
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TABLE III 

Illustration of Eq. (37) 

(::)8. -1.000 

(~~)8. 8y 

1.000 1.414 
0.500 1.225 
0.250 1.118 
0.100 1.049 
0.010 1.005 
0.001 1.0005 
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remarks are further illustrated by Table III, where Sy is computed for 
various values of the second term when the first is assumed equal to unity. 

E. Special rules for combining errors. The rules expressed by Eqs. 
(37), (43), and (44) are valid regardless of the mathematical form of 
V = Vex, y). A number of special rules for such commonly occurring 
functions as sums and products may be derived from these equations. The 
computed quantity is given in terms of two measured quantities; general
ized forms for more than two variables may be obtained by the methods 
discussed at the end of Section V-A. These rules are given for independent 
errors, which are the ones usually encountered. The corresponding rules for 
nonindependent errors may be obtained by substituting ordinary algebraic 
addition for addition by taking the square root of the sum of the squares, 
and replacing the standard deviations by the estimated amounts of errors. 

(1) Sum and difference. V = x ± y. 

Therefore, by Eq. (37), 

av 
ax 

av 
1 anday = ±l. 

Sv = vs' + S2. • Y 
(45) 

In other words, the absolute standard deviation of a quantity which is the 
sum or difference of measured quantities is equal to the square root of the 
sum of the squares of the olJsolute standard deviations of the measured 
quantities. 

(2) Product of factors raised to various powers. Let 

(46) 
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where m and q are known exactly from theory: 

aV 
ax 

Substituting these values into Eq. (37): 

Dividing Eq. (47) by Eq. (46): 

av 
ay 

BV = . 1m2 (BX)2 + 2 (BY)2 . V .~ x q y 

(47) 

(48) 

However, according to Eq. (7), the fractional standard deviations are, 
respectively, 

8V 
Sv = V' 

Therefore Eq. (48) becomes 

S 
_ Sx 

x - x' 
S _ 8y. 

Y - Y 

(49) 

In other words, if a computed quantity is equal to the product of meas
ured quantities raised to various powers, then the fractional standard devia
tion of the computed quantity is equal to the square root of the sum of 
terms consisting of the squares of the fractional deviations of the measured 
quantities multiplied by the squares of their respective powers. Thus it can 
be seen that particular care should be devoted to measurement of the 
quantity with the larger exponent. 

(3) Simple product or quotient. In this case, V = xy or V = x/yo There
fore, m = 1 and q = ±1 in treatment (2) above. Then Eq. (49) becomes 

Sv=VS;+S~. (50) 

The fractional standard deviation in a product or quotient is equal to the 
square root of the sum of the squares of the fractional standard deviations 
of the measured quantities. . 

(4) The logarithm of a quantity. If V = B In x, where B is a constant 
known exactly from theory, dV /dx = B/x, and 8V = (B/x)sx. Therefore 

sv = BSv . (51) 

..... 
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Hence the absolute standard deviation of the natural logarithm of x 
(the case B = 1) is equal to the fractional standard deviation of x, while 
the absolute standard deviation of the logarithm to the base 10 (the case 
B = 0.434) is equal to 0.434 times the fractional standard deviation of x. 

F. Estimation of systematic errors. As mentioned in Section II, sys
tematic errors may be either determinate or indeterminate. When they are 
determinate, the original error may be removed by application of a suitable 
correction. However, this correction generally involves random errors, 
which must be combined with other random errors by the methods de
scribed. 

A complete analysis of an experiment requires the listing of all possible 
sources of indeterminate systematic error. In many cases an observer can 
make an intelligent guess as to the magnitude of these errors. Since they 
are usually independent, systematic errors may be combined with random 
errors by the methods of combining independent errors previously de
scribed, that is, by taking the square root of the sum of their squares. For 
this purpose, many experimenters estimate the limit of error, the maximum 
amount by which the quantity may reasonably be supposed to be in error. 
Other observers believe such a procedure too conservative, since large 
errors are relatively improbable compared with small ones. Therefore, in
stead of using the full estimated value of limit of error, these observers re
duce it, perhaps by one-third. Since these are matters of opinion, no firm 
rules can be given, and each experimenter must use his own judgment. 

In some cases where it may be difficult or impossible to estimate the 
magnitude of a source of indeterminate systematic error, it may be possible 
to give the sign. For example, suppose an experiment involves trapping in a 
vessel the liquid emerging at high speed from a pipe, and later weighing the 
liquid that has been collected. In such a measurement a systematic error 
might result from loss of liquid by splashing. There is no possibility, how
ever, that extra liquid might be collected. In such cases, the discussion of 
error of the complete experiment should not only list the source of error of 
the measured quantity, and its sign, but should also consider its influence in 
regard to sign on the error of any quantity computed from this measured 
one. 

G. Selection of instruments. The preceding paragraphs dealt with the 
problem of calculating the error in a computed quantity V in terms of the 
errors in the directly measured quantities. A converse problem also exists: 
how to select instruments or techniques for making the measurements in 
such a way that the error in V is smaller than some preassigned value. This 
question may be anwered by reversing the previous reasoning. 

First of all, suppose that V is to be determined from K independently 
measured quantities x, y, ... , and each is to make an equal contribution to 
sv. The standard deviation Sv is given in terms of the standard deviations 
of the measured quantities by means of Eq. (37), generalized to include K 
quantities. Then if the contributions are to be equal, the terms under the 
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radical must be equal, and the required values of the standard deviations in 
the measured quantities are 

Sv 
8 x = aV I 

YK-ax 
and so on. 

Sv 
SII = -.~ /_=ca=V' 

vK
ay 

The assumption of equal contributions is usually unrealistic. In Section 
V - D it was shown that when the magnitudes of the contributions of two 
measured quantities are considerably different, the smaller one has very 
little effect on the result and often can be neglected. Therefore, although K 
quantities may be involved, only rarely do more than two of them say, x 
and y, have an appreciable effect. We can select x and y by inspection. If 
we suppose that the term involving y under the radical of Eq. (37) is W 2 

times as large as the term involving x, it can easily be seen that the required 
values of 8 x and By are 

Sa; = 
Sv and 8 y = 

WSv 

VI + W2 av 
ay 

In rare situations where more than two unequal contributions must be 
considered, the previous reasoning may be extended to cover them. 
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VI. SPECIAL TOPICS IN THE ADJUSTMENT OF DATA 

Adjustment of data concerns the selection of the "most probable value" 
of a quantity. In the case of a measured quantity this most probable value, 
as we have indicated in Section IV-A, is the arithmetic average of the 
measured values if these are assumed to have equal precision. In the case 
of a quantity whose value may be computed directly from measured 
quantities by some theoretical formula, we showed in Section V-A that the 
most probable value is calculated from the average values of the measured 
quantities, that is, V(x, y). Most situations normally encountered fall into 
one of these two categories. However, there are a few other common cases 
which should be considered. 

A. Weighted averages. Suppose that we measure x by two methods, ob
taining values Xl and X2, which are known to have standard deviations 81 

and 82, respectively. A simple arithmetic average would not give the IIbest" 
value because it would make X, and X2 equal in importance, while their 
effors are assumed to be different. A weighted average is then used as a 
means of determining the best value. The question is how to assign the 
correct value of the weight factor W, to X, and of W2 to X2 to give the 
minimum standard deviation in the average value x. By definition, 

(52) 

where W = WZ/Wl' 

We may compute sx, the standard deviation in X, by application of Eq. 
(37), replacing V by X, X by Xl> and y by X2. From Eq. (52), 

ax 1 and 
ax w 

l+w 
---. 

aX1 aX2 l+w 
Therefore, 

~ 2 ~ 22 
Sa: = 

81 - W 82 . 

(1 + W)2 (53) 

The optimum value of w is found by calculating asx/aw from Eq. (53) 
and making this equal to zero. Then 

(54) 

Thus the optimum weight factors are inversely proportional to the squares 
37 
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of the respective standard deviations (or average deviations, or probable 
errors). The generalization of this treatmcnt to the situation where more 
than two values are to be averaged is obvious. 

One consequence of this rule is that if one of the deviations is appreciably 
larger than the other, the measured value corresponding to it has little 
effect on the average value x. In fact, if the ratio of the standard deviations 
is morc than about 2, the less precise value can be neglected completcly and 
the more precise directly measured value can be considcred as the final 
result, X. 

B. Best fit of a straight line. Frequently, two quantities x and y, both 
directly measurablc, are related by some theoretical formula y = Vex) 
which involves some unknown constants to be cvaluated from the observed 
data. The most familiar and simple examplc, of course, is when y is related 
to x by the equation of a straight line: 

y = a + bx, (55) 

where a is the intercept on the y-axis and b is thc slope. In a more com
plicated formula there may be a larger number of such constants. If there 
are m such constants, we could obtain m pairs of values of x' and Y, substitute 
these into the relation y = Vex), obtain m equations rclating the constants, 
and then solve these simultaneously for the constants. However, the preci
sion is limited by this process, since it requires exactly m values, no more 
and no less. If we have available more than m values, we cannot utilize all 
of our information in this way to improve the precision in the calculated 
values of the constants, because they would bc algebraically ovcrde
termined. Hence it is necessary to develop an improved method of calcula
tion which utilizes all the data. The general method uses the principles that 
we have employed many times previously in this work. However, in any 
one case the particUlar method depends on the exact nature of the relation 
y = y(x). The treatment for the linear casc, based upon certain simplifying 
assumptions, is well known and is given below as an example. The methods 
used in this treatment may be extended to apply to more complicatcd 
problems of this type. Examples of these applications may be found in 
various textbooks. * Recently Hudson ** has developcd a gcneral method 
which is particularly useful with transcendental functions. 

Now let us consider the formulation of the problem of fitting a straight 
line to some experimental data. If we were to obtain a pair of "true" 
measurements of x and Y I these would be represented graphically as a point, 
and the straight line would be expected to pass through it. Howcver, 
actually both x and yare subject to experimental errors, and thus the posi
tion of the point is not exactly determined. Therefore thc ideal point might 
be considered as having expanded to an ellipse, the ratio of whose axes is 

*Sec for example, Worthing and Geffner, op. cit., Chapter XI. 
**G. E. Hudson, Am. J. Phys. 21, 362 (1953). 
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Sy/sx. Because of the experimental errors, the centers of such ellipses 
cannot be expected to lie on the straight line, but they can be expected to be 
distributed equally on either side of it. (In this application the word 
(/equally" has several possible meanings, three of which may be inferred 
from the following discussion.) In general, the sizes of these hypothetical 
ellipses are different because the errors are functions of the variables, and 
therefore the centers lie in a band of varying width. Hence the importance 
of each pair of measurements in determining the parameters of the line 
differs; this effect can be included in the calculations by the introduction of 
appropriate weight factors. 

This discussion suggests that the best straight line is the one chosen in 
such a way that the sum of the squares of the distances from the centers of 
the ellipses to the line, measured along some appropriate direction, is a 
minimum. The appropriate direction depends upon the relative errors of 
x and y. In the case where x and y have the same physical dimensions and 
are plotted to the same scale, and 8 x = 8 y , the appropriate direction is the 
perpendicular. In most other cases, the appropriate direction is oblique. 
Often x and y have diITerent dimensions and their graphical scales bear an 
arbitrary relationship; ill this case there is usually no unique way of select
ing the appropriate direction, but in a few instances the original variables 
can be transformed to others which do have the same dimensions. In any 
event, such a process is very complicated algebraically, and the labor re
quired is rarely justified even in the situations where, in principle, the 
transformation can be carried out uniquely. Those readers who are in
terested in the details of the method may find them in a paper by Bacon. * 

A much simpler procedure results if we assume that one of the quantities, 
let us say x, is measured exactly, while all of the errors are concentrated in 
the other variable y. Graphically this situation is represented by vertical 
lines centered upon the experimental points (Xn, Yn). The actual errors of x 
may be taken into account indirectly by increasing the lengths of the lines 
an appropriate amount beyond the lengths required to represent the actual 
errors of y. The deviation of Yn is defined by the relation 

bYn = Yn - (a + bXn). (56) 

Graphically, bYn is the vertical distance from the point (Yn, xn) to the de
sired straight line of best fit. Then we choose the constants a and b in the 
equation of this line in such a way that the weighted sum of the squares of 
these deviations is a minimum. This choic'e is independent of the relative 
dimensions of x and y. 

Alternatively, we could determine a and b by supposing that all of the 
errors have been concentrated in x, and then following a similar procedure. 
These values of a and b usually would not coincide with the first set, but the 
differences generally would not be of great practical importance. The values 

*R. H. Dacon, "1m. J. Phys. 21, 428 (1953). 
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which would be obtained by having the error divided between x and y may 
be supposed to be intermediate. 

We shall proceed with the assumption that all of the error is concentrated 
in y. For simplicity' we shall further assume that the absolute error of y 
is independent of x. Thus the plotted experimental values (X., Yn) surround 
the line of best fit in a band of constant width. 

From Eq. (56), 

If Ie is the total number of pairs of values, the sum of the squares of the 
deviations of Y is 

k k k k 

L: (oYn)2 = L: Y; + ka
2 + b2 L: x; - 2a L: (Yn - bxn) 

n=l 

k 

- 2b L: (xnYn). (58) 

n=l 

We select a and b in such a way as to make this sum a minimum. To do 
this, we differentiate partially with respect to a and b and place the two 
partial derivatives each equal to zero. (For simplicity we shall omit the 
indices on the summation signs.) 

a[L;(oy,,)2j = 2lea - 2L;Yn + 2b"xn = 0 aa ~ I 
(59) 

and 

2bL;x; + 2aL;xn - 2L;(xnYn) = o. (60) 

The desired values of a and b are obtained by solving these equations 
sipmltaneously: 

a= L;x;L;Yn - L;x"L;(xnYn) 
kL;x; - (L;xn)2 

(61) 

* ActualIy the caJcubtions arC not greatly complicated by omitting this 
assumption, but the situations which are of most practical interest arc those for 
which this assumption is valid. As an exercise the student might carry through 
the theory with weight factors included, or, alternatively, reference can be made 
to R. H. Bacon, Am. J. Phys. 21, 428 (1953). 
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b= 
k"L, (XnYn) - "L,xn"L,Yn 

k "L,x; - ("L,xn) 2 

41 

(62) 

It should be pointed out that Lx;; and (Lxn)2 are not the same: Lx;; 
implies that each value of x is squared and then a sum is made of these 
squares, while (Lxn) 2 implies that all of the values of x are added together 
and then this sum is squared. In other words, the order of performing the 
operations of raising to the second power and of addition is interchanged. 
There is an analogous distinction between L(xnYn) and LXnLYn' 

The evaluation of the indicated sums is generally tedious and is not 
justified unless the calculations retain all of the significant figures yielded 
by the data. It is best done with the aid of a calculating machine. Note 
that the denominators in Eqs. (61) and (62) are identical, and therefore this 
quantity need be calculated only once. Once these results are obtained, 
they are useful for a number of reasons. For instance, the slope or intercept 
may be of direct physical interest. Also, these values when substituted into 
Eq. (55) are useful for interpolating or extrapolating (that is, for calculating 
a value Yo corresponding to some arbitrarily chosen xo). 

Next we consider how to compute the standard deviations of the quanti
ties a, b, and Yo. Our data consists of k pairs of measurements of x and y, 
which are samples of the universe of all such measurements. The standard 
deviations Sa, Sb, and So are then the rms deviations about au, bu, and You, 
which are the quantities that would be computed from the entire universe 
were it possible to make all of the measurements contained in it. These 
standard deviations, as we shall show, may be expressed in terms of Sy, the 
standard deviation of Y about the line defined by au and bu. In analogy to 
Eq. (5), it is possible to estimate Sy as follows: 

s = /"L,(BYn)2. 
Y '\j k - 2 (63) 

We shall not attempt here to rigorously justify the factor k - 2 which 
appears in the denominator on the right in place of the factor Ie - 1 ap
pearing in Eq. (5). Such a justification may be found in a paper by Bacon. * 
However, with reference to the discussion which followed the intro
duction of Eq. (5), it should be pointed out that Ie - 2 is the number of 
independent determinations of BYn' While there are Ie different BYn's which 
may be computed from the data, there are two relations between them. 
These are given by Eqs. (59) and (60). The number of constraints, two, is 
also equal to the number of the constants to be determined, namely a and 
b. (When we consider a directly measured quantity, as in Section IV-B, 
there is one relation bet"i;een the deviations and one constant to be de
termined, namely, x.) 

*R. H. Bacon, Am. J. Phys. 21, 428 (1953). 
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The quantity I(SYn)2 in Eq. (63) may be computed by first calculating 
all of the deviations directly, substituting into Eq. (56), in turn, the ex
perimentally determined pairs of values of x and y. However, such a direct 
calculation is cumbersome and generally not as convenient as an indirect 
one. Indirectly, I(SYn)2 may be computed from Eq. (58) after expressions 
for a and b have been substituted into it from Eqs. (61) and (62). The 
result is 

While Eq. (63A) appears formidable, it should be noticed that except for 
~y~, all of the quantities represent numbers, or the squares of numbers, 
which have previously been obtained in the calculation of a and b. 

The standard deviation Sa may be found in the usual way, that is, by 
application of Eci. (37). There are k contributions appearing under the 
radical, resulting from the errors due to the k separate V's. The contribu
tion due to one of these, let us say Yi> may be found by differentiating Eq. 
(61) with respect to Yi and multiplying by the standard deviation of Yi, 
which is Sy. The variable Yi appears in Eq. (61) in one of the terms of the 
sum IYn and also one of the terms of IXnYn' Its contribution to the error 
is thus 

(64) 

The standard deviation Sa is found by squaring the terms of the type 
given by Eq. (64), adding them (that is, summing the indexj from 1 to k), 
and taking the square root of this sum. In this process it should be remem
bered that IXi = IXn and Ix~ . Ix;. The result is 

Sa = By (65) 

In a similar manner, the standard deviation of the slope 8b may be found: 

J Ie 
Sb = Sy kLx2 - (Lx )2' 

n n 
(66) 

A computed value Yo is found by substitution of the desired value of the 
. independent variable Xo into Eq. (55): 

Yo = a + bxo. (67) 
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The contribution to the standard deviation in Yo as a result of the deviation 
of one of the measured values Yi is 

(68) 

The partial derivatives on the right side of Eq. (68) are evaluated and then 
the standard deviation So of Yo may also be computed in the manner out
lined above. The result is 

(69) 

By placing the derivative of So with respect to Xo equal to zero, it may be 
shown that 80 has a minimum value 

Sy 
80 min = vIC (69A) 

at Xo = T-xn/k, that is, when Xo is equal to the average of the measured 
values of x. 

On the other hand, if the magnitude of Xo becomes very large, the first 
two terms inside the parentheses of Eq. (69) may be neglected in com
parison with the third term. By reference to Eq. (66), it may be seen that 
in this case Eq. (69) approaches the following: 

(69B) 

Thus, for extreme extrapolations, the standard deviation of the computed 
value is proportional to the value of the independent variable. Also, when 
the magnitnde of Xo is large, a may be neglected in comparison with bxo 
in Eq. (67). Then it may be seen that if Eq. (69B) is divided by this 
approximate form of Eq. (67). 

So 

Yo 
Sb 
b or So = Sb. 

Under these conditions, the fractional deviation in Yo approaches a constant 
value, the fractional standard deviation of thc slope b. 

C. Miscellaneous applications of the least squares fit of a straight line. 
A number of equations not originally in the linear £01'111 may be trans
formed into the form of Eq. (55), and the foregoing treatment may be 
applied. For example, consider the following relation, which is the mathe-
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matical form of both Newton's law of cooling and the law of radioactive 
decay: 

(70) 

where A and B are constants to be determined, and z and t are measured 
quantities. Taking logarithms of both sides of Eq. (70), 

lnz = InA - Bt. 

This may be put into the desired form by placing In z = y, In A = a, 
B = -b, and t = x. 

In the application of Eq. (70) to radioactive decay, the errors in the time 
t = x are usually of negligible effect in comparison with the statistical 
errors of the counting rate z, and the background counting rate is usually 
small compared with the counting rate obtained with the source. Under 
these conditions, the validity of the hypothesis that the standard deviation 
of y is independent of x can be ensured by the simple procedure of employ
ing the saIne number of counts in each measurement, as may be seen by 
reference to Eq. (51) and to Eq. (85) below. Also, in this case, Sy may be 
computed more easily from Eq. (85) than from Eqs. (63) and (63A). How
ever, if some instrumental defect or the presence of disturbances is sus
pected, it may be desirable to compute Sy by both methods as a check. 

Another type of equation which may be transformed into linear form is 

u = evn + D. (71) 

If n is known exactly from theory e and D are to be determined, appro
priate substitutions are (1) x = vn, y = u, a = D, and b = e. If D = 0 
by theory but if e and n are to be determined, possible substitutions are 
(2) x = In v, y = In u, a = In e, and b = n; or (3) x = In u, y = In v, 
a = -(l/n)ln e, and b = lin. 

If in principle D = 0 but if the actual location of the origin (u = 0, 
v = 0) is subject to error, and if n is known from theory, as in the example 
of the calibration of a Jolly balance illustrated in Section VIII-B, appro
priate substitutions are (I) above or (4) x = u ' /n , y = v, and b = e- 1

/
n . 

In such a case it is appropriate to use [x = 0, y = y(O)] as one of the pairs 
of measurements. Then, as the line of best fit cannot be expected to go 
through the origin exactly, the computed value of a from Eq. (61) cannot 
be expected to be zero, although it should not be large compared with Sa 

from Eq. (65). 
On the other hand, if the location of the origin is known exactly (D = 0), 

it is necessary to rework the basic theory with a = 0 in Eq. (56). Now Eq. 
(59) does not exist, and we obtain the desired value of b simply by setting 
a = 0 in Eq. (60): 

(7IA) 

• _____ - ~",d 
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It is to be noted that the largest measured values of x and y have the great
est importance in determining b in Eq. (71A). Possible substitutions are 
(1) with D = a = 0, and (4) above. 

This discussion may also apply in some situations in which C and Dare 
not true constants. They may be functions of other measured quantities; 
if these are known with a relatively high precision, the effects of their errors 
may be neglected to a reasonable approximation. They may be slowly vary
ing functions of u and v themselves; in this case we may employ the method 
of successive approximations, in which we use approximate values of u and 
v to correct C or D for this slow variation. In particular, if D is a true con
stant plus such a slowly varying function, it would be appropriate to em
ploy sUbstitutions of the type (1) above, with a equal to the truly constant 
portion of D and y equal to u minus the variable portion of D. If D = 0 
but if C is a true constant plus a slowly varying function, we may utilize an 
analogous procedure with substitutions (2) or (3). 

Where we have a choice of possible substitutions, according to our 
hypothesis we should choose for y whichever quantity has the larger errors. 
Also we should keep in mind the hypothesis that the absolute deviation of 
y is independent of x. Should there be a slight dependence it may be 
neglected, of course, as a reasonable approximation, but if the dependence 
is large, the theory must be modified to include appropriate weight factors. 



VII. THE STATISTICAL ERRORS OF NUCLEAR PHYSICS 

Particles are emitted by radioactive decay or by artificial disintcgration 
at completely random intervals of time. Therefore, the time I necessary for 
the observation of any finite number of counts N is subject to statistical 
fluctuations giving rise to an error in the observed counting rate n = N /1. 
This is fundamental to the phenomenon of radiation and not a property of 
the instruments and is an error of definition. We shall prove that the 
standard deviation is approximately VN hy first showing that the number 
of counts observed in a given time obeys what is called a Poisson distribu
tion, and then showing that when the average number N becomes very 
large it approaches a Gaussian distribution. This result was first obtained 
by Bateman. * 

Let the probability that N particles are observed in time I be PN . Sup
pose that the time I is divided into b equal intervals so small that the 
probability of the emission of two particles within an interval is negligible. 
The probability of the emission of one particle in a given interval is then 
N /b. The probability of emission of N particles in the first N intervals and 
none in the remaining b - N is (see Section IV-F) : 

(72) 

However, this is only one possible way of obtaining N particles in the total 
time I. The first particle could have been in anyone of the b intervals, the 
second in anyone of the remaining b - 1, the third in any of the remaining 
b - 2, and, finally, the Nth in any of thc remaining b + 1 - N. The Nth 
particle has the choice between the interval it occupies and all the b - N 
unoccupied intervals. Thus the number of ways of distributing the N 
particles in the b intervals is 

b(b - l)(b - 2) ... (b - N + 1). 

However, not all of these ways are essentially different, since the particles 
may be interchanged without influcneing the result. The number of 
essentially different ways is found by dividing the above by the number of 
ways of interchanging the particles. Anyone of the N particles can be 
chosen as the first, anyone of the remaining N - 1 as the second, anyone 

*H. Bateman, Phil. Mag. 20, 704 (1910). 
46 



STATISTIC:\L ERRORS 47 

of the remaining N - 2 as the third; and so on. Thus the number of ways 
of interchanging the particles is NL Hence the probability of obtaining N 
counts is 

PN = b(b - 1) . ;? - N + 1) (~r (1 _ ~tN. (73) 

This is called the binomial distribution law. If b approaches infinity, the 
first factor on the right approaches bN IN!, while the last factor approaches 
e-N , yielding the formula for a Poisson distribution: 

(74) 

the factor bN having canceled out. 
Strictly speaking, Eq. (74) is valid only for integral values of N. How

ever, a continuous curve of P N vs. N plotted through the points specified by 
this formula yields a curve with an unsymmetrical maximum for small 
values of N. As N becomes larger, the curve becomes more symmetrical 
about the maximum, while the relative hcight-to-width ratio of the maxi
mum increases. Analytically, Eq. (74) can be shown to approach a Gauss 
error curve, as follows. 

According to Stirling's approximation for the factorial of a large number, 
for which the error is less than 1 percent whcn the number is greater than 
10, 

(75) 
Therefore, 

and 
1 PH = ---. 

V2"N 
(76) 

If Y represents the natural logarithm of P A', 

Y = -N + N In N - In V2; - (N + t) In N -I- N, (77) 

and 

dY - (1) dN = In N - (N -I- t) N -- In N -I- l. (78) 

This latter expression must be zero ,yhen PN is a maximum, yielding 

N - Ne ' /2N = O. (79) 

Since N is postulated as being a large number, e1
/
2N is essentially unity and 

therefore the maximum occurs very nearly at N = N. 
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We now expand Y about N in a Taylor series, and retain only the first 
two nonvanishing terms. As the maximum occurs very close to N, the first 
derivative of Y with respect to N is zero, and this expansion becomes 

-) 1 d2 y 2 YeN) = yeN + - -' x 
2 dN2 

./--= 1(1 1)2 
= - In V 27fN - 2: N - 2N2 x, (SO) 

where x = N - N. Since N is a large number, the second term in the . '" 
parentheses of Eq. (SO) may be neglected in comparison with the first. Then. 
if the antilogarithm is taken: ' 

(SI) 

By referenee to Eq. (24), we see that Eq. (SI) is in the form of the Gauss 
error law with a prccision index h = 1/V2N. According to Eq. (29), the 
standard deviation s = Vz/h. Thus, if on the average N counts are ob
served in a given time t, the standard deviation in the number of counts is 

s= VN. (S2) 

From this point on we shall drop the bar above the N. We usually make 
only a single reading, which is assumed to be near enough to N to be ade
quate for the evaluation of s. 

Generally, we are not interested in 8, the standard deviation in the num
ber of counts, but rather in the standard deviation of the counting rate. 
The counting rate is given by 

(83) 

where t is the time of observation, 'which is assumed to be measured wit,h 
such high precision that its error may be neglected. 

By the use of Eqs. (S2) and (S3), we see that the standard deviation in 
the counting rate is 

and the fractional standard deviation is 

. , 
:-" .. '.~~ ~ 

fIi 
'\fi' (S4) 

(85) 
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Thus the fractional standard deviation decreases in proportion to the 
square root of the number of counts, being 10% for N = 100, 1% for 
N = 10,000, and 0.1% for N = 1,000,000. High-precision measurements 
require observation of a large number of counts, which involves long ob
servation times if the counting rates are low. 

In practice, all counting instruments have a background counting rate fJ 
when no known source is present. When the source is present, the counting 
rate increases to n2. The counting rate due to the source then is 

(86) 

By reference to Eqs. (45) and (84), we find the standard deviation in n, to 
be 

~ 
8, = '\ft; + /iJ ' (87) 

where t2 is the time of observation of source plus background and tp is the 
time of observation of the background. 

If the source is a weak one, the second term in Eq. (87) is important and 
considerable time must be spent measuring the background. We might in
quire into the most efficient division of time between measurement of back
ground counting rate and of counting rate due to the source. It can be 
shown that if the total time t2 + tp is a constant, 8, is a minimum when the 
times of observation are made proportional to the square roots of the 
counting rates. That is, 

(88) 

The reasoning leading up to Eq. (88) may be applied to develop the most 
effective procedure in experiments involving more than one source* and a 
variable background. '* 

The previous discussion has dealt with the purely statistical errors of 
counting instruments. These instruments are also subject to other errors 
and corrections which are, however, beyond the scope of this work. It 
should be mentioned that statistical errors are sometimes important in 
so-called integrating instruments, which do not detect individual particles 
but the average effects of many particles. t 

'Y. Beers, Rev. Sci. Inst. 13, 72 (1942). 
**R. L. Loevinger and M. Berman, Nucleonics 9, No. I, 26 (1951). 
tY. Beers, Phys. Rev. 63, 77 (1943). Also, John Strong et at., Procedures in 

Experimental Physics, Prentice-Hall, Inc., New York (1938), Chapter VI. 



VIII. EXAMPLES 

Analyses of data from two standard experiments from undergraduate 
laboratory conrses are presented in the following pages. The data were 
taken under conditions similar to those normally encountered in such 
courses rather than under research conditions where the observer might 
have had access to standards for calibration or to more than one instrument 
of a given type for comparison. Yet if these facilities had been available, 
the same principles would have been applied, only more extensively. 

The role of human opinion was discussed in the Introduction, and in 
accord with those remarks, the analyses presented here involve in great 
measure selection of data and estimation of sources of error in circum
stances not amenable to theory. It is not the purpose of this writer to 
attempt to make the reader agree with him quantitatively, nor does he 
claim authoritative judgment. His purpose is to point out the things which 
an experimenter must consider and which he must evaluate in a manner 
that seems reasonable. 

The theory which has been developed is applied wherever possible. 
However, criticism might justly be made of the present use of this theory, 
which is based upon the assumption of many more measurements than are 
contained in these examples. For complete rigor, an elaborate theory based 
upon small .amples should be used. However, it is to be remembered that 
errors evaluated by the theory are to be added to others obtained by esti
mate or, more candidly, by pure guesswork. When the procedure is viewed 
from the result, a rigorous theory is hardly in order. The number of 
measurements in these examples is typical not only of undergraduate ex
periments but also, unfortunately, of many research experiments. Yet, in 
spite of its lack of rigor, the theory serves a useful purpose in that it shows 
what the important errors are and what must be done to perform a better 
experiment. 

A. Torsion pendulum experiment. 
, Description. A body of axial symmetry is fastened on its axis to the lower 

end of a vertical wire whose upper end is held by a rigid, fixed clamp. By 
twisting the body and releasing it, the system is set into oscillation with a 
period 

T= 211'.J!c, (89) 

where I is the moment of inertia of thc body and" is the torque constant of 
the wire, i.e., the torque per unit angle of twist. 

50 

-- ~,,,",, 
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In spite of its symmetry, the shape of the body does not allow its moment 
of ine~tia to .be ~alculate? easily. However, provision is made for slipping 
onto It a thm CIrcular rmg of mass m, inner diameter Db and outer di
ameter D 2 • With its axis coinciding with the wire the moment of inertia of 
the ring, 1', may be calcnlated from the expressi~n 

l' = ~(D~ + D~). (90) 

With this ring in place, a period T' is measured. From these data it is 
possible to compute both Ie and I by means of the following formulas: 

and 
T2 

1= l' T'2 _ T2 

(91) 

(92) 

The torsion modulus of the material of which the wire is composed is 
given by 

(93) 

where L is the length of the wire and d its diameter. 
The derivation of these formulas follows from methods to be found in 

standard texts. * It is to be noted, however, that here the formulas are 
expressed in ternlS of diameters rather than, as is conventional, in terms of 
radii, because the diameters are the directly measured quantities. 

Data and calculations. For evaluation of error, the quantities to be de
termined must be expressed in terms of directly measured quantities or in 
terms of computed quantities that are statistically independent. The 
moment of inertia I' is, of course, a computed quantity whose value is in
volved in obtaining the desired end results, k, I, and M. It is statistically 
independent, hmvever, because Dl and D2 are measured with a vernier 
caliper, while the other lengths Land d are measured with a meter stick and 
a micrometer, respectively, and beca1:se the measurement of mass is not 
otherwise involved. Therefore ",e m&y proceed step by step, first calculat
ing I' and evaluating its error, and then performing the calculations in
dicated by Eqs. (91) and (92). Since k is then statistically independent of L 
and d, we take the computed value of k and calculate M from Eq. (93). If 
I' were Hot statistically independent, we would have to eliminate it be
tween these equations and obtain le, I, and M in terms of measured 
quantities. 

*See, for example, F. 'V. Sears, Jlechanics, Heat, and Sound, Addison-Wesley 
Publishing Co., Inc., Reading, l\Iass. (2nd cd., 1952). 
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In the present example, we choose to compute average deviations from 
the data by use of Eq. (6), since this procedure involves less arithmetic 
than the calculation of standard deviations. However, an estimate of the 
standard deviations may be obtaincd from these values of the average 
deviations by use of Eq. (31). Since these computations have already been 
illustrated in Section IV-E, not all of the details will be given here. 

Evaluation of l' and its error. The measurements of Dl and D2 were 
taken at different positions on the ring, and therefore the errors are partly 
errors of definition, since the surfaces cannot be expected to be perfectly 
circular in cross section. The data are given in Table IV. 

TABLE IV 

Data on Dl and D 2• 

D, D, 

Value Deviation Value Deviation 

7.82 cm +0.02 em 8.79 em -0.04 em 
7.82 +0.02 8.82 -0.01 
7.83 +0.03 8.85 +0.02 
7.74 -0.06 8.87 +0.04 
7.78 -0.02 8.84 +0.01 
7.79 -0.01 8.82 -0.01 
7.79, em 0.021 em 8.833 em 0.01 5 em 

Average Average Average Average 
deviation deviation 

The average deviations in Table IV represent estimates of the errors of 
single measurements. The average deviations of the means are found by 
dividing by the square root of the number of observations (that is, 6), giving 
0.01 , em for D, and 0.006 cm for D 2 • However, these are estimates of only 
the random contributions to the errors of D j and D 2 • There are also non
independent systematic errors due to the calibration of the caliper, which 
are indeterminate with the facilities available. It is reasonable to assume 
the presence of such errors amounting to one scale division, or 0.01 eID, 
which is comparable with the random errors. Therefore, both experimental 
and systematic errors must be included in the analysis. If one were very 
much smaller than the other, it could have been neglected, in accordance 
with the argument in Section V-C. 

The largest observed deviations contained in Table IV are 0.06 cm for 
D, and 0.04 cm for D z. These are, respectively, 2.2 and 2.7 times the 
average deviations, or 1.8 and 2.1 times the estimated standard deviations. 
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According to Table II the probabilities of obtaining deviations of these 
magnitudes or greater are roughly 0.11 and 0.04. While these probabilities 
are slightly smaller than 11k = 0.17, they do not seem to this author 
sufficiently small to consider rejection of the eorresponding data. 

The mass of the ring was measured with a platform balance. The ring 
was placed on the left-hand pan, and balance was obtained by using three 
different combinations .of the standard masses. The procedure was re
peated with the ring on the right-hand pan. The results are shown in Table 
V. The standard masses were tested for internal consistency by balancing 
various combinations against each other and against the slider. The reading 
of the slider was added to the mass in the right-hand pan. (See Table Vr.) 

Clearly, these data do not warrant application of the theory of error, and 
the error can be evaluated only by estimate. The author estimates that the 
error in the mass due to all causes may reasonably be taken as an average 
deviation of 0.2 gm. (Since both the ring and the standard masses were 
made of brass, the eorrection for the buoyant force of air is identically zero.) 

Aecording to Eq. (90), 

Ring on left 

379.0 gm 
379.8 
380.0 

Average 379.6 gm 

TABLE V 

Mass of Ring 

G.593 X 103 gm-cm2
. 

Ring on right 

380.3 gm 
380.2 
380.3 

380.3 gm 

Average of both sets ~ 380.0 gm 

TABLE VI 

Consistency of Masses 

Mass on left Ai ass on right 

100 + 100 gm 200.1 gm 
2 1.9 
4 4.0 

100 + 1 101.0 
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TABLE VIII 
Data on Periods 

T' T 

Devia- Devia-
tion tion 

Num- Num- (sec) (sec) 
ber b"er from from 
of Devia- of average average 

oscilla- Time Period tion oscilla- Time Period of of 
tions (sec) (sec) (sec) tions (sec) (sec) 4.454 sec 4.46, 
----------- -----

20 140.2 7.01 -0.01 20 89.5 4.48 +0.03 +0.01 
20 140.4 7.02 0.00 20 89.5 4.48 +0.03 +0.01 
20 140.6 7.03 +0.01 21 93.0 4.43 -0.02 -0.03 
20 140.1 7.01 -0.01 20 89.2 4.46 +0.01 -0.01 
20 140.5 7.03 +0.01 20 89.4 4.47 +0.02 0.00 
20 140.4 7.02 0.00 20 87.6 4.38 -0.07 --

20 89.5 4.48 +0.03 +0.01 

Mean 7.020 sec l\1ean 4.454 sec 
Average deviation: 0.007 Average deviation: 0.034 sec 
Average deviation of mean: If the measurement T = 4.38 sec is rc-

O.OOa sec jected) the mean becomes 4.467 sec 
Fractional average with an average deviation of 0.010 

deviation of mean: scc or an average deviation of 0.004 
4 X 10-4 sec of the mean. 

values of the period, but the analysis of the deviations would have to take 
into account their weight factors in a manner which is beyond the scope of 
this book. 

Upon completing this calculation we note that the average deviation of 
one measurement of T is five times that of one measurement of T'. Since 
these observations were made in the same way with the same equipment, 
the average deviations of their universes should be equaL A ratio as large 
as 5 seems unreasonable even for small samples of six or seven measure
ments. (According to advanccd considerations, the probability of obtaining 
such a large ratio is less than 0.003). Therefore, we inquire whether one of 
the measurements of T should be rcjected. The one of 4.38 sec is to be sus
pected becanse of its large deviation, 2.1 times the average. According to 
Table II, the probability of obtaining a deviation this large or greater is 
roughly 0.11. Since this is not vcry small in comparison to 11k = 0.14, this 
consideration does not seem to justify the rejection of this measurement. 
However, the estimate of the C!'rors should bc based upon all the data 
available, and all that data should be consistent. Because the measurc
ments of T and T' ,,,ere made in the same way, it is logical, although not 



Source 

I' 

T' 

T 

EXAMPLES 

TABLE IX 

Total Error of k by the General Method 

Average Square 
deviation of con-

Partial derivative C ontrib1.ltion tribution 

k 
19 gm-cm2 - ~ 1.32 19 X 1.32 ~ 25 625 

l' 

-2kT' 
3 X 1O-3sec --- ~ -4 27X 10' T'2_ T2 . -3 X 4.27 ~ -12.8 164 

2kT 
4X 1O-3 8ec T'2_ T2= 2,74X 103 4 X 2.74 ~ 11 121 

Sum of squares of contributions 910 

Absolute average deviation = V9IO = 30 dyne-em per radian. 

F ·I d·· 30 at jfactIOna average eVIatlOn = -- X 10-3 = O.3~/o, 
8.87. 
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rigorously correct, for us to consider the six measurements of T and the 
seven of T' as a single sample of thirteen measurements. The average of 
all thirteen deviations is 0.01 9 sec, and according to Table II, the probability 
of obtaining a deviation of 0.07 sec with such an average deviation is about 
0.003. Furthermore, if we reject the value 4.38 sec, we obtain an average of 
4.467 sec and an average deviation of 0.010 sec for one measurement of T, 
and this is roughly equal to 0.007 sec for T'. Therefore, the author has con
cluded that some blunder has been made in the 4.38 sec measurement and 
has rejected it. In examining the surviving sample of six measurements of 
T', we note that the one of 4.43 sec has a probability of occurrence of 0.05, 
which is somewhat smaller than 11k = 0.17; however, particularly with 
such a small sample, this consideration does not seem to justify the rejec
tion of this measurement, especially as the validity of repetitive application 
of a rejection procedure is highly dubious. 

If we should inquire into a possible cause of a blunder in the rejected 
4.38 sec measurement, we note that if 19t oscillations had taken place 
within the observed time of 87.6 sec, the period would have been 4.49 sec, 
and this is in reasonable agreement with the other measurements. There
fore we may suppose that 19k oscillations were D1iscounted as 20. 

According to Eq. (91), 

4".2 X 0.593 X 103 

/c = (7.02 0)2 _ (4.407)2 8.873 X 103 dyne-cm per radian. 

I 
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J' 

T' 

T 

EXAMPLES 

TARLE IX 

Total Error of k by the General Method 

Average Square 
deviation oj con-

Partial derivative Contribution tribution 

k 
19 gm-cm2 --~ 1.32 10 X 1.32 ~ 25 625 

l' 

3 X 10-3 sec 
-2kT' 
--- ~ -4.27 X 10' T'2_ T2 -3 X 4.27 ~ -12.8 164 

2kT 
4 X 10-3 sec T" _ T' ~ 2.74 X 10' 4X 2.74~ 11 121 

Sum of squares of contributions 910 

Absolute average deviation = vm:o = 30 dyne-em per radian. 

F 'I d" 30 01 ractlOna average eVIatlOn = -- X 10-3 = 0.3~ /0, 
8.87, 

57 

rigorously correct, for us to consider the six measurements of T and the 
seven of T' as a single sample of thirteen measurements. The average of 
all thirteen deviations is 0.019 sec, and according to Table II, the probability 
of obtaining a deviation of 0.07 sec with such an average deviation is about 
0.003. Furthermore, if we reject the value 4.38 sec, we obtain an average of 
4.46, sec and an average deviation of 0.010 sec for one measurement of T, 
and this is roughly equal to 0.00, sec for T'. Therefore, the author has con
cluded that some blunder has been made in the 4.38 sec measurement and 
has rejected it. In examining the surviving sample of six measurements of 
T', we note that the one of 4.43 sec has a probability of occurrence of 0.05, 
which is somewhat smaller than l/k = 0.17; however, particularly with 
such a small sample, this consideration docs not seem to justify the rejec
tion of this measurement, especially as the validity of repetitive application 
of a rejection procedure is highly dubious. 

If we should inquire into a possible cause of a blunder in the rejected 
4.38 sec measurement, we note that if 19t oscillations had taken place 
within the observed time of 87.6 sec, the period would have been 4.49 sec, 
and this is in reasonable agreement with the other measurements. There
fore we may suppose that 19t oscillations were miscounted as 20. 

According to Eq. (91), 

41r2 X 6.593 X 103 

Ie = (7.02 0)2 _ (4.467)2 8.873 X 103 dyne-em per radian. 
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TABLE X 

Calculation of Error of M 

Average 
fractional Magnitude of Sq'uare of 

Source deviation Power contribution contribution 

L 0.1% 1 0.1 X 1- 0.1% 0.01 
k 0.34% 1 0.34 X 1 - 0.34% 0.12 
d 0.13% -4 0.13 X 4 - 0.52% 0.27 

Sum of squares of contributions 0040 

Fractional average deviation of Mis v'oAo = 0.6% 

Eq. (49) as generalized for three variables. The general method is consider
ably more tedious, and will not be used. Computation by the special 
method is given in Table X. 

Conclusions. The wire used in this experiment was made of steel whose 
exact constitution was unknown. The Handbook of Chemistry and Physics 
(18th ed.) lists values ranging from 7.79 to 8.11 X 10" dynes per em2 for 
the torsion modulus (or modulus of rigidity) of various types of steel. The 
discrepancy between the value obtained in the present experiment and the 
listed values is 4 percent or greater, which is mOTe than 5 times the assigned 
average deviation. However, Inoduli for other common metals listed range 
from 2.37 X 10 11 dynes per em 2 for aluminum to 14.81 X 10 11 dynes per 
cm2 for tungsten. The relatively large discrepancy between the experi
mental and the listed values for steel does not necessarily indicate any large 
unknown error in this experiment, for two reasons. First, the exact consti
tution of the wire was unknown, and second, this particular sample had 
been in use in the laboratory for some time and undoubtedly had been 
subiected to some abuse. 

In our analysis, we recall that the principal error of l' was due to the 
systematic error of calibration in the venier ca1iper used for measuring the 
diameters of the ring. This could have been eliminated by correction if 
calibration facilities had been available. Since the principal error of k as 
given in Table IX was due to ]', the prinC'ipal error of k may be tl'ared in
directly to this same source. Thus further measurements on the periods T 
and T' would not have materially improved the value of k. The largest 
contribution to the error of lIl, as shown in Table X, was due to the 
measurement of the wire diameter d. Since d itself was Jneasured with 
relatively high precision, its contribution predominated as a result of the 
fact that d appeared to the fourth power in Eq. (93), the theoretical formula 
for l1f. Thus any improvement in the value of l1f would have to be obtained 
mainly by improving the measurement of d. The contribution of k, which 
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was traced to the vernier caliper, is the second source of error and is not 
entirely negligible. 

B. Calibration of a Jolly balance. A Jolly balance employs the exten
sion of a vertical helical spring to measnre an applied force. Since the spring 
is assumed to be used within its elastic limit, 

F= Kz, (94) 

where F is the applied force, z is the extension of the spring, and K is a 
constant of proportionality called the force constant or spring constant. If 
the balance is to be used fol' measuring unknown forces in terms of their 
corresponding values of the extension, K must be determined. Calibration 
is effected by hanging various known weights on the spring and measuring 
the corresponding values of z. One method for finding K is to plot F vs. z 
graphically and obtain the slope of the straight line drawn through the 
experimental points, or as near to them as possible. This procedure gives 
no means of estimating the error, however, and in the present experiment it 
is not suitable because the numerical value of the slope would not have a 
precision corresponding to that of the original data. We shall use the 
method developed in Section VI-B, which overcomes these disadvantages, 
although at the expense of considerable labor. 

In our instrument, the extension was produced by moving the support 
which held the npper end of the spring along a vertical scale until a hori
zontal cross bar, hung from the lower end of the spring above the weight 
pan, just barely failed to touch a fixed indicator. 

The data and calculations based on Section VI-B are given in Table XI. 
The first column gives the applied forces, expressed for convenience in static 
units, grams weight. The second column lists the corresponding positions 
of the support of the upper end of the spring as measured from an arbitrary 
zero. The third column gives the extensions of the spring, obtained by sub
tracting 40.426 cm (the position for zero force) from the figures in the second 
column. Each of these positions was determined five times, and the respec
tive standard deviations were computed by use of Eq. (5), by the method 
illustrated in Section IV - E. These standard deviations are given in the 
fourth column. While there may appear to be some variation in these 
figures, the agreement is excellent considering the small number of values 
upon which each is based. We conclude that the absolute random error of 
the extension is independent of the applied force, and therefore the applica
tion of the theory in the latter part of Section VI-B seems justified. (The 
3-gm measurement was not completely independent, since this was ob
tained by combining the 1-gm and 2-gm weights used in the preceding 
values. However, this is neglected in the following calculations.) 

In the application of the theory in Section VI-B, there are two possible 
ways of associating the quantities in Eq. (91) with those in Eq. (55): 

(1) x = F, y = z, b = 11K, 
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TABLE XI 

Data and Calculations for Calibration of Jolly Balance 

Stand-
ard 

Posi- devia-
Ap- tion lion 
plied of Exten- (from 
force 8Z!'P- sian c:rperi- ay ~ 

(gm wt) port (em) ment) y - a - bx 
(x) (em) (y) (em) X2 xy (em) y2 

-----
0.000 40.426 0.000 9 X 10-' 0.000 0.000 -5 X 10-' 0.00000 
1.000 41.206 0.780 7 X 10-' 1.000 0.780 -IX 10-' 0.60840 
2.000 42.002 1.576 D X 10-3 4.000 3.152 +19 X 10-' 2.48378 
3.000 42.758 2.332 5 X 10-' 9.000 6.996 Ox 10-3 5.43822 
4.000 43.508 3.082 5 X 10-' 16.000 12.328 -26 X 10-' 9.49872 
5.000 44.324 3.898 7 X 10-' 25.000 19.490 +14 X 10-' 15.19440 

----- ----
15.000 11.668 7 X 10-' 55.000 42.746 33.22352 
=~xn ='1;Yn Average =1;x2 =~XnYn = ~y; • 

and 
(2) x = z, y = F, b = K. 

In both cases, a has the theoretical value of zero. By logic, there is no clear 
choice of method. In the calibration process, the force is the independent 
variable and logically should be associated with x, while in the use of the 
instrument after calibration the converse is true. The first system was 
chosen arbitrarily and is used in the remaining columns of Table XI. 

If we take values of the quantities from the bottom of Table XI and 
also place the number of measurements" = 6, the values of a and b may 
be calculated from Eqs. (61) and (62), respectively: 

a = (55.000)(11.668) ;, (15.000)(42.746) = 0.005 em 

and 

b (6)(42.746) - (15.000)(11.668) 0775 t 
= D' =. gcmpergmw J 

where 

D' = "L;x; - (L;Xn )2 = (6)(55.000) - (15.000)2 = 105.00 (gm wt)2. 

In this application, the interpretation to be given to a is that it is the 
deviation associated with the point (0.000,0.000). Since this is an experi-
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mental point subject to errors like other points, we cannot expect our line 
of best fit to go through it exactly. 

Let us determine 8y by the indirect method, in which 1:( 8Yn) 2 is found 
by the use of Eq. (63A): 

L:(8Yn)2 = 33.22352 

(11.668)2(55.000) - 2(42.746)(15.000)(11.668) + 6(42.746)2 
D' 

= 33.22352 _ 7,487.822 - 14,9~;81O + 10,963.323 

= 33.22352 - 33.22224 = 1.28 X 10-3 cm2. 

A calculation by the direct method gave 1.26 X 10-3 cm2, which can be 
considered to be in good agreement. 

The question arises why it was necessary to retain as many as eight 
digits in some of the numbers appearing in this calculation when the 
original numbers, whose products give these numbers, are given to only five 
digits and probably are significant to only four. If these numbers were 
statistically independent, four, or possibly five, digits would be all that 
would be justified. However, correlations exist between these numbers be
cause they are computed from the same set of data. Therefore systematic 
differences persist in spite of much larger statistical variations. 

By substitution of 1:(8Yn)2 = 1.28 X 10-3 cm2 and k = 6 into Eq. (63) 
we obtain 

8 y = 18 X 10-3 cm. 

This is more than twice as great as the average of 7 X 10-3 cm obtained 
from analysis of the data on the individual readings, as given at the bot
tom of the fourth column of Table XI. This discrepancy is a real one. It 
cannot be attributed to statistical errors, since both values were computed 
from the same set of data and also because it is too large for this to be the 
probable source. The discrepancy can then be explained only by the pres
ence of another source of error, due to the calibration of the weights. We 
denote the quantity at the bottom of the fourth column of Table XI by 8, 

and the standard deviation in the calibration of the weights by 82. Then, 
since these are independent, 

From this and from the numerical values given above, 82 = 17 X 10-3 cm. 
It is more logical to express this in terms of units of force. To do this, we 
divide this value by the force constant K and obtain 22 mg wt. Thus our 
specification of the applied force in Table XI to four significant figures is 
not completely justified. 
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The preceding calculation has been based upon the assumption that all 
the errors are concentrated in y (displacement) and none are in x (force); it 
has also utilized the minimization of the sum of the squares of the deviations 
of y. However, it has led to a contradiction of these assumptions, as it has 
compelled us to conclude that there are large errors in the measurements of 
force as represented by S2. Therefore, a more elaborate method of selecting 
the best line is required, in principle. As we have said previously, whatever 
such a method is, it should yield a straight line having parameters inter
mediate between those obtained by the extremes of assuming (a) that all 
the errors are concentrated in the displacement, as above, and (b) that all 
the errors are concentrated in the force. Therefore, to set bounds on these 
parameters, a similar calculation was carried out employing the other sub
stitution of variables which was suggested earlier: x = z, y = F, b = K. 
The slope and the intercept on the displacement axis obtained in this second 
calculation turned out to be identical with the original ones, namely, 0.775, 
cm per gm wt and 0.005 cm. Therefore 'an elaborate procedure such as this 
would be justified only if the individual measurements had greater accuracy 
than the present ones. 

The determination of the error B2 from the present data would have been 
impossible without the application of the theory in Section VI-B. The large 
value of B2 indicates that the only improvement which would have been 
obtained by use of a more sensitive spring would have been to increase the 
accuracy of relative measurements of force. It would not have improved 
the absolute values unless a better set of weights had been used for calibra
tion. 

The result By = 18 X 103 cm may be used to calculate the standard 
deviations of a and b. From Eq. (65), 

S,a = 18 X 10-3 ~55~?0 = 13 X 10-3 cm. 

The value of a is 5 X 10-3 cm, and the difference between this and the 
expected value, zero, is thus considerably less than the standard deviation. 

In a similar manner, the standard deviation of b may be determined from 
Eq. (66): 

Bb = 18 X 10-3 ~ ~, = 4.3 X 10-3 cm per gm wt. 

The fractional standard deviation is Sb = 0.55%. 
Finally, we should estimate the error to be assigned to unknown forces 

to be measured by this instrument. From Eq. (69A), it is seen that 80, the 
standard deviation in a computed value of y, is a minimum when x is equal 
to the average of the measured values. In the present experiment, this 
occurs at x = 2.5 gm wt, where the extension has a standard deviation, by 
Eq. (69A), of 7 X 10-3 cm. Since with the instrument used in this experi-
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ment the extension is measured and the force is computed, it is more logical 
to express this as an equivalent standard deviation in the force. This may 
readily be effected by dividing by the value of the slope b = K, giving 9 
mg wt. "'''~ 

The computation of~rces between the extremes used in the calibration 
is, of course, in the !'an'!>;e of "interpolation." At both of these limits, 
Xo = 0 and Xo = 5 gm wt, So equals 13 X 1O~3 em, or the equivalent of 
17 mgwt, according to Eq. (69). If the force is greater than 5 gm wt (that is, 
lies in the range of "extrapolation"), So increases further. The maximum 
value which could be accommodated with the present scale and spring 
would be with the upper end of the spring at the end of the scale at 100 em. 
This would correspond to an extension of the spring of about 60 em or an 
applied force of approximately 45 gm wt. For such a force the standard 
deviation, according to Eq. (69), is the equivalent of 0.22 gm wt or 0.48%. 
This is very nearly equal to the limiting value for the fractional standard 
deviation Sb = 0.54%. 
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